Stability analysis of a stochastic port-Hamiltonian car-following model
Authors
Barbara Rüdiger, Antoine Tordeux, Baris E Ugurcan
Abstract
Port-Hamiltonian systems are pertinent representations of many nonlinear physical systems. In this study, we formulate and analyse a general class of stochastic car-following models with a systematic port-Hamiltonian structure. The model class is a generalisation of classical car-following approaches, including the
Citation
- Journal: Journal of Physics A: Mathematical and Theoretical
- Year: 2024
- Volume: 57
- Issue: 29
- Pages: 295203
- Publisher: IOP Publishing
- DOI: 10.1088/1751-8121/ad5d2f
BibTeX
@article{R_diger_2024,
title={{Stability analysis of a stochastic port-Hamiltonian car-following model}},
volume={57},
ISSN={1751-8121},
DOI={10.1088/1751-8121/ad5d2f},
number={29},
journal={Journal of Physics A: Mathematical and Theoretical},
publisher={IOP Publishing},
author={Rüdiger, Barbara and Tordeux, Antoine and Ugurcan, Baris E},
year={2024},
pages={295203}
}
References
- Pipes, L. A. An Operational Analysis of Traffic Dynamics. Journal of Applied Physics vol. 24 274–281 (1953) – 10.1063/1.1721265
- Chandler, R. E., Herman, R. & Montroll, E. W. Traffic Dynamics: Studies in Car Following. Operations Research vol. 6 165–184 (1958) – 10.1287/opre.6.2.165
- Herman, R., Montroll, E. W., Potts, R. B. & Rothery, R. W. Traffic Dynamics: Analysis of Stability in Car Following. Operations Research vol. 7 86–106 (1959) – 10.1287/opre.7.1.86
- Gazis, D. C., Herman, R. & Rothery, R. W. Nonlinear Follow-the-Leader Models of Traffic Flow. Operations Research vol. 9 545–567 (1961) – 10.1287/opre.9.4.545
- Bando, M., Hasebe, K., Nakayama, A., Shibata, A. & Sugiyama, Y. Dynamical model of traffic congestion and numerical simulation. Physical Review E vol. 51 1035–1042 (1995) – 10.1103/physreve.51.1035
- Orosz, G., Wilson, R. E., Szalai, R. & Stépán, G. Exciting traffic jams: Nonlinear phenomena behind traffic jam formation on highways. Physical Review E vol. 80 (2009) – 10.1103/physreve.80.046205
- Orosz, G., Wilson, R. E. & Stépán, G. Traffic jams: dynamics and control. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences vol. 368 4455–4479 (2010) – 10.1098/rsta.2010.0205
- Nagel, K. & Schreckenberg, M. A cellular automaton model for freeway traffic. Journal de Physique I vol. 2 2221–2229 (1992) – 10.1051/jp1:1992277
- Barlovic, R., Santen, L., Schadschneider, A. & Schreckenberg, M. Metastable states in cellular automata for traffic flow. The European Physical Journal B vol. 5 793–800 (1998) – 10.1007/s100510050504
- Treiber, M. & Helbing, D. Hamilton-like statistics in onedimensional driven dissipative many-particle systems. The European Physical Journal B vol. 68 607–618 (2009) – 10.1140/epjb/e2009-00121-8
- Hamdar, S. H., Mahmassani, H. S. & Treiber, M. From behavioral psychology to acceleration modeling: Calibration, validation, and exploration of drivers’ cognitive and safety parameters in a risk-taking environment. Transportation Research Part B: Methodological vol. 78 32–53 (2015) – 10.1016/j.trb.2015.03.011
- Tordeux, A. & Schadschneider, A. White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves. Journal of Physics A: Mathematical and Theoretical vol. 49 185101 (2016) – 10.1088/1751-8113/49/18/185101
- Treiber, M. & Kesting, A. The Intelligent Driver Model with Stochasticity -New Insights Into Traffic Flow Oscillations. Transportation Research Procedia vol. 23 174–187 (2017) – 10.1016/j.trpro.2017.05.011
- Wang, Y., Li, X., Tian, J. & Jiang, R. Stability Analysis of Stochastic Linear Car-Following Models. Transportation Science vol. 54 274–297 (2020) – 10.1287/trsc.2019.0932
- Friesen, M., Gottschalk, H., Rüdiger, B. & Tordeux, A. Spontaneous Wave Formation in Stochastic Self-Driven Particle Systems. SIAM Journal on Applied Mathematics vol. 81 853–870 (2021) – 10.1137/20m1315567
- Ngoduy, D., Lee, S., Treiber, M., Keyvan-Ekbatani, M. & Vu, H. L. Langevin method for a continuous stochastic car-following model and its stability conditions. Transportation Research Part C: Emerging Technologies vol. 105 599–610 (2019) – 10.1016/j.trc.2019.06.005
- Xu, T. & Laval, J. A. Analysis of a Two-Regime Stochastic Car-Following Model: Explaining Capacity Drop and Oscillation Instabilities. Transportation Research Record: Journal of the Transportation Research Board vol. 2673 610–619 (2019) – 10.1177/0361198119850464
- Stern, R. E. et al. Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments. Transportation Research Part C: Emerging Technologies vol. 89 205–221 (2018) – 10.1016/j.trc.2018.02.005
- Gunter, G. et al. Are Commercially Implemented Adaptive Cruise Control Systems String Stable? IEEE Transactions on Intelligent Transportation Systems vol. 22 6992–7003 (2021) – 10.1109/tits.2020.3000682
- Makridis, M., Mattas, K., Anesiadou, A. & Ciuffo, B. OpenACC. An open database of car-following experiments to study the properties of commercial ACC systems. Transportation Research Part C: Emerging Technologies vol. 125 103047 (2021) – 10.1016/j.trc.2021.103047
- Ciuffo, B. et al. Requiem on the positive effects of commercial adaptive cruise control on motorway traffic and recommendations for future automated driving systems. Transportation Research Part C: Emerging Technologies vol. 130 103305 (2021) – 10.1016/j.trc.2021.103305
- Treiber, M., Kesting, A. & Helbing, D. Delays, inaccuracies and anticipation in microscopic traffic models. Physica A: Statistical Mechanics and its Applications vol. 360 71–88 (2006) – 10.1016/j.physa.2005.05.001
- Wang, T., Li, G., Zhang, J., Li, S. & Sun, T. The effect of Headway Variation Tendency on traffic flow: Modeling and stabilization. Physica A: Statistical Mechanics and its Applications vol. 525 566–575 (2019) – 10.1016/j.physa.2019.03.116
- Khound, P., Will, P., Tordeux, A. & Gronwald, F. Extending the adaptive time gap car-following model to enhance local and string stability for adaptive cruise control systems. Journal of Intelligent Transportation Systems vol. 27 36–56 (2021) – 10.1080/15472450.2021.1983810
- van der Schaft, Port-Hamiltonian systems: an introductory survey. (2006)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. Symmetries and conservation laws for Hamiltonian systems with inputs and outputs: A generalization of Noether’s theorem. Systems & Control Letters vol. 1 108–115 (1981) – 10.1016/s0167-6911(81)80046-1
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Knorn, S., Chen, Z. & Middleton, R. H. Overview: Collective Control of Multiagent Systems. IEEE Transactions on Control of Network Systems vol. 3 334–347 (2016) – 10.1109/tcns.2015.2468991
- Wang, Output synchronization of multi-agent port-Hamiltonian systems with link dynamics. Kybernetika (2016)
- Cristofaro, A., Giunta, G. & Giordano, P. R. Fault-Tolerant Formation Control of Passive Multi-Agent Systems Using Energy Tanks. IEEE Control Systems Letters vol. 6 2551–2556 (2022) – 10.1109/lcsys.2022.3169308
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Dynamics on Graphs: Consensus and Coordination Control Algorithms. IFAC Proceedings Volumes vol. 43 175–178 (2010) – 10.3182/20100913-2-fr-4014.00012
- LI, C.-S. & WANG, Y.-Z. Protocol Design for Output Consensus of Port-controlled Hamiltonian Multi-agent Systems. Acta Automatica Sinica vol. 40 415–422 (2014) – 10.1016/s1874-1029(14)60004-5
- Jafarian, M., Vos, E., De Persis, C., van der Schaft, A. J. & Scherpen, J. M. A. Formation control of a multi-agent system subject to Coulomb friction. Automatica vol. 61 253–262 (2015) – 10.1016/j.automatica.2015.08.021
- Wei, J., Everts, A. R. F., Camlibel, M. K. & van der Schaft, A. J. Consensus dynamics with arbitrary sign-preserving nonlinearities. Automatica vol. 83 226–233 (2017) – 10.1016/j.automatica.2017.06.001
- Xue, D., Hirche, S. & Cao, M. Opinion Behavior Analysis in Social Networks Under the Influence of Coopetitive Media. IEEE Transactions on Network Science and Engineering vol. 7 961–974 (2020) – 10.1109/tnse.2019.2894565
- Sharf, M. & Zelazo, D. Analysis and Synthesis of MIMO Multi-Agent Systems Using Network Optimization. IEEE Transactions on Automatic Control vol. 64 4512–4524 (2019) – 10.1109/tac.2019.2908258
- Matei, Inferring particle interaction physical models and their dynamical properties. (2019)
- Mavridis, Detection of dynamically changing leaders in complex swarms from observed dynamic data. (2020)
- Ma, Y., Chen, J., Wang, J., Xu, Y. & Wang, Y. Path-Tracking Considering Yaw Stability With Passivity-Based Control for Autonomous Vehicles. IEEE Transactions on Intelligent Transportation Systems vol. 23 8736–8746 (2022) – 10.1109/tits.2021.3085713
- Knorn, S., Donaire, A., Agüero, J. C. & Middleton, R. H. Passivity-based control for multi-vehicle systems subject to string constraints. Automatica vol. 50 3224–3230 (2014) – 10.1016/j.automatica.2014.10.038
- Knorn, S., Donaire, A., Agüero, J. C. & Middleton, R. H. Scalability of Bidirectional Vehicle Strings with Measurement Errors. IFAC Proceedings Volumes vol. 47 9171–9176 (2014) – 10.3182/20140824-6-za-1003.00741
- Dai, Safety analysis of integrated adaptive cruise control and lane keeping control using discrete-time models of port-Hamiltonian systems. (2017)
- Dai, S. & Koutsoukos, X. Safety analysis of integrated adaptive cruise and lane keeping control using multi-modal port-Hamiltonian systems. Nonlinear Analysis: Hybrid Systems vol. 35 100816 (2020) – 10.1016/j.nahs.2019.100816
- Bansal, H. et al. Port-Hamiltonian formulation of two-phase flow models. Systems & Control Letters vol. 149 104881 (2021) – 10.1016/j.sysconle.2021.104881
- Clemente-Gallardo, Geometric discretization of fluid dynamics. (2002)
- Rashad, R., Califano, F., Schuller, F. P. & Stramigioli, S. Port-Hamiltonian modeling of ideal fluid flow: Part I. Foundations and kinetic energy. Journal of Geometry and Physics vol. 164 104201 (2021) – 10.1016/j.geomphys.2021.104201
- Rashad, R., Califano, F., Schuller, F. P. & Stramigioli, S. Port-Hamiltonian modeling of ideal fluid flow: Part II. Compressible and incompressible flow. Journal of Geometry and Physics vol. 164 104199 (2021) – 10.1016/j.geomphys.2021.104199
- Sugiyama, Y. et al. Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam. New Journal of Physics vol. 10 033001 (2008) – 10.1088/1367-2630/10/3/033001
- Tordeux, A. & Seyfried, A. Collision-free nonuniform dynamics within continuous optimal velocity models. Physical Review E vol. 90 (2014) – 10.1103/physreve.90.042812
- Helly, Simulation of bottlenecks in single lane traffic flow. (1959)
- Jiang, R., Wu, Q. & Zhu, Z. Full velocity difference model for a car-following theory. Physical Review E vol. 64 (2001) – 10.1103/physreve.64.017101
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Teschl, (2012)
- Da Prato, (1992)
- Abramovich, (2002)
- Da Prato, (1996)
- Gibbs, A. L. & Su, F. E. On Choosing and Bounding Probability Metrics. International Statistical Review vol. 70 419–435 (2002) – 10.1111/j.1751-5823.2002.tb00178.x
- Klenke, (2014)
- Karatzas, (1991)
- Frank, E. On the zeros of polynomials with complex coefficients. Bulletin of the American Mathematical Society vol. 52 144–157 (1946) – 10.1090/s0002-9904-1946-08526-2
- Tordeux, A., Roussignol, M. & Lassarre, S. Linear stability analysis of first-order delayed car-following models on a ring. Physical Review E vol. 86 (2012) – 10.1103/physreve.86.036207
- Tordeux, A., Chraibi, M., Schadschneider, A. & Seyfried, A. Influence of the number of predecessors in interaction within acceleration-based flow models. Journal of Physics A: Mathematical and Theoretical vol. 50 345102 (2017) – 10.1088/1751-8121/aa7fca
- Cordes, J., Chraibi, M., Tordeux, A. & Schadschneider, A. Single-File Pedestrian Dynamics: A Review of Agent-Following Models. Modeling and Simulation in Science, Engineering and Technology 143–178 (2023) doi:10.1007/978-3-031-46359-4_6 – 10.1007/978-3-031-46359-4_6
- Kloeden, (2011)