Authors

Jieqiang Wei, Anneroos R.F. Everts, M. Kanat Camlibel, Arjan J. van der Schaft

Abstract

This paper studies consensus problems for multi-agent systems defined on directed graphs where the consensus dynamics involves general nonlinear and discontinuous functions. Sufficient conditions, only involving basic properties of the nonlinear functions and the topology of the underlying graph, are derived for the agents to converge to consensus.

Keywords

Multi-agent systems; Consensus; Nonsmooth analysis; Port-Hamiltonian systems

Citation

BibTeX

@article{Wei_2017,
  title={{Consensus dynamics with arbitrary sign-preserving nonlinearities}},
  volume={83},
  ISSN={0005-1098},
  DOI={10.1016/j.automatica.2017.06.001},
  journal={Automatica},
  publisher={Elsevier BV},
  author={Wei, Jieqiang and Everts, Anneroos R.F. and Camlibel, M. Kanat and van der Schaft, Arjan J.},
  year={2017},
  pages={226--233}
}

Download the bib file

References

  • Agaev, R. & Chebotarev, P. On the spectra of nonsymmetric Laplacian matrices. Linear Algebra and its Applications vol. 399 157–168 (2005) – 10.1016/j.laa.2004.09.003
  • Arutyunov, (2000)
  • Bacciotti, A. & Ceragioli, F. Stability and Stabilization of Discontinuous Systems and Nonsmooth Lyapunov Functions. ESAIM: Control, Optimisation and Calculus of Variations vol. 4 361–376 (1999) – 10.1051/cocv:1999113
  • Bollobas, (1998)
  • Bullo, (2009)
  • Bürger, M., Zelazo, D. & Allgöwer, F. Duality and network theory in passivity-based cooperative control. Automatica vol. 50 2051–2061 (2014) – 10.1016/j.automatica.2014.06.002
  • Chung, (2006)
  • Clarke, (1990)
  • Cortés, J. Finite-time convergent gradient flows with applications to network consensus. Automatica vol. 42 1993–2000 (2006) – 10.1016/j.automatica.2006.06.015
  • Discontinuous dynamical systems. IEEE Control Systems vol. 28 36–73 (2008) – 10.1109/mcs.2008.919306
  • De Persis, C. & Frasca, P. Robust Self-Triggered Coordination With Ternary Controllers. IEEE Transactions on Automatic Control vol. 58 3024–3038 (2013) – 10.1109/tac.2013.2273302
  • Dimarogonas, D. V. & Johansson, K. H. Stability analysis for multi-agent systems using the incidence matrix: Quantized communication and formation control. Automatica vol. 46 695–700 (2010) – 10.1016/j.automatica.2010.01.012
  • Filippov, (1988)
  • Jafarian, M. & De Persis, C. Formation control using binary information. Automatica vol. 53 125–135 (2015) – 10.1016/j.automatica.2014.12.016
  • Lin, Z., Francis, B. & Maggiore, M. State Agreement for Continuous‐Time Coupled Nonlinear Systems. SIAM Journal on Control and Optimization vol. 46 288–307 (2007) – 10.1137/050626405
  • Monshizadeh, N. & De Persis, C. Output agreement in networks with unmatched disturbances and algebraic constraints. 2015 54th IEEE Conference on Decision and Control (CDC) 4196–4201 (2015) doi:10.1109/cdc.2015.7402873 – 10.1109/cdc.2015.7402873
  • Paden, B. & Sastry, S. A calculus for computing Filippov’s differential inclusion with application to the variable structure control of robot manipulators. IEEE Transactions on Circuits and Systems vol. 34 73–82 (1987) – 10.1109/tcs.1987.1086038
  • Papachristodoulou, A., Jadbabaie, A. & Münz, U. Effects of Delay in Multi-Agent Consensus and Oscillator Synchronization. IEEE Transactions on Automatic Control vol. 55 1471–1477 (2010) – 10.1109/tac.2010.2044274
  • Ren, Coordination variables and consensus building in multiple vehicle systems. (2005)
  • Saber, R. O. & Murray, R. M. Consensus protocols for networks of dynamic agents. Proceedings of the 2003 American Control Conference, 2003. vol. 2 951–956 – 10.1109/acc.2003.1239709
  • van der Schaft, Modeling of physical network systems. Systems & Control Letters (2015)
  • van der Schaft, (2014)