Stabilisation of a Rotating Beam Clamped on a Moving Inertia with Strong Dissipation Feedback
Authors
Andrea Mattioni, Yongxin Wu, Yann Le Gorrec, Hans Zwart
Abstract
In this paper we consider the stabilization problem of a beam clamped on a moving inertia actuated by an external torque and force. The beam is modelled as a distributed parameter port-Hamiltonian system (PDEs), while the inertia as a finite dimensional port-Hamiltonian system (ODEs). The control inputs correspond to a torque applied by a rotating motor and a force applied by a linear motor. In this paper we propose the use of a strong dissipation term in the control law, consisting of the time derivative of the restoring force at the clamping point. After a change of variables, the closed loop system shows dissipation at the boundaries of the PDEs. In this preliminary work we show that the closed loop operator is the generator of a contraction C0-semigroup in a special weighted space, with norm equivalent to the standard one. Further, we prove the asymptotic stability of the closed loop system and we show the effectiveness of the proposed control law in comparison with a PD controller with the help of numerical simulations.
Citation
- Journal: 2020 59th IEEE Conference on Decision and Control (CDC)
- Year: 2020
- Volume:
- Issue:
- Pages: 5056–5061
- Publisher: IEEE
- DOI: 10.1109/cdc42340.2020.9304038
BibTeX
@inproceedings{Mattioni_2020,
title={{Stabilisation of a Rotating Beam Clamped on a Moving Inertia with Strong Dissipation Feedback}},
DOI={10.1109/cdc42340.2020.9304038},
booktitle={{2020 59th IEEE Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Mattioni, Andrea and Wu, Yongxin and Gorrec, Yann Le and Zwart, Hans},
year={2020},
pages={5056--5061}
}
References
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica 40, 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Krabs, W. & Sklyar, G. M. On the Controllability of a Slowly Rotating Timoshenko Beam. Z. Anal. Anwend. 18, 437–448 (1999) – 10.4171/zaa/891
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Morgul, O., Bo Peng Rao & Conrad, F. On the stabilization of a cable with a tip mass. IEEE Trans. Automat. Contr. 39, 2140–2145 (1994) – 10.1109/9.328811
- de Queiroz, M. S., Dawson, D. M., Agarwal, M. & Zhang, F. Adaptive nonlinear boundary control of a flexible link robot arm. IEEE Trans. Robot. Automat. 15, 779–787 (1999) – 10.1109/70.782034
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Trans. Automat. Contr. 59, 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Ramirez, H., Zwart, H. & Le Gorrec, Y. Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control. Automatica 85, 61–69 (2017) – 10.1016/j.automatica.2017.07.045
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- villegas, Stability and stabilization of a class of boundary control systems (2005)
- augner, Well-posedness and Stability for Interconnected Structures of Port-Hamiltonian Type. (2018)
- augner, Stabilisation of Infinite-Dimensional PortHamiltonian Systems via Dissipative Boundary Feedback. Ph D thesis (2018)
- Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
- Conrad, F. & Morgül, Ö. On the Stabilization of a Flexible Beam with a Tip Mass. SIAM J. Control Optim. 36, 1962–1986 (1998) – 10.1137/s0363012996302366
- Endo, T., Sasaki, M., Matsuno, F. & Jia, Y. Contact-Force Control of a Flexible Timoshenko Arm in Rigid/Soft Environment. IEEE Trans. Automat. Contr. 62, 2546–2553 (2017) – 10.1109/tac.2016.2599434
- Curtain, R. & Zwart, H. Introduction to Infinite-Dimensional Systems Theory. Texts in Applied Mathematics (Springer New York, 2020). doi:10.1007/978-1-0716-0590-5 – 10.1007/978-1-0716-0590-5
- Augner, B. & Jacob, B. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory 3, 207–229 (2014) – 10.3934/eect.2014.3.207
- Aoues, S., Cardoso-Ribeiro, F. L., Matignon, D. & Alazard, D. Modeling and Control of a Rotating Flexible Spacecraft: A Port-Hamiltonian Approach. IEEE Trans. Contr. Syst. Technol. 27, 355–362 (2019) – 10.1109/tcst.2017.2771244
- Gibson, J. S. A Note on Stabilization of Infinite Dimensional Linear Oscillators by Compact Linear Feedback. SIAM J. Control Optim. 18, 311–316 (1980) – 10.1137/0318022
- villegas, A port-Hamiltonian approach to distributed parameter systems. Ph D thesis (2007)