Robust Fault-Tolerant Control for Stochastic Port-Hamiltonian Systems against Actuator Faults
Authors
Song Xu, Wei Wang, Sheng-Yuan Chen
Abstract
Exploiting the stochastic Hamiltonian structure, this paper investigates the robust fault-tolerant control (FTC) for stochastic port-Hamiltonian systems (SPHSs) with actuator faults. First, an energy-based robust FT controller is developed for SPHSs against the loss of actuator effectiveness. Then, an alternative condition, as well as its corresponding controller are given to extend the application of the proposed controller. Unlike the existing FT controllers, they are continuous, and there is no need to solve the Lyapunov function and Hamilton–Jacobi–Isaacs (HJI) inequalities associated with the nominal systems. Finally, an energy-based robust adaptive FT controller is presented for the faulty SPHSs to deal with parameter perturbations, and an alternative condition with its corresponding controller is also given. Both the adaptive controllers preserve the main stochastic Hamiltonian structure of the faulty systems. Compared to the existing adaptive controller, simulations on synchronous generators show the effectiveness of the proposed methods.
Citation
- Journal: Mathematics
- Year: 2022
- Volume: 10
- Issue: 9
- Pages: 1477
- Publisher: MDPI AG
- DOI: 10.3390/math10091477
BibTeX
@article{Xu_2022,
title={{Robust Fault-Tolerant Control for Stochastic Port-Hamiltonian Systems against Actuator Faults}},
volume={10},
ISSN={2227-7390},
DOI={10.3390/math10091477},
number={9},
journal={Mathematics},
publisher={MDPI AG},
author={Xu, Song and Wang, Wei and Chen, Sheng-Yuan},
year={2022},
pages={1477}
}
References
- Maschke, The Hamiltonian formulation of energy conserving physical systems with external ports. Arch. Elektr. Übertrag. (1995)
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Transactions on Automatic Control vol. 45 1498–1502 (2000) – 10.1109/9.871758
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Wang, Y., Feng, G. & Cheng, D. Simultaneous stabilization of a set of nonlinear port-controlled Hamiltonian systems. Automatica vol. 43 403–415 (2007) – 10.1016/j.automatica.2006.09.008
- Li, S. & Wang, Y. Robust adaptive control of synchronous generators with SMES unit via Hamiltonian function method†. International Journal of Systems Science vol. 38 187–196 (2007) – 10.1080/00207720601110566
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Transactions on Automatic Control vol. 58 1823–1828 (2013) – 10.1109/tac.2012.2235739
- Macchelli, A. Passivity-Based Control of Implicit Port-Hamiltonian Systems. SIAM Journal on Control and Optimization vol. 52 2422–2448 (2014) – 10.1137/130918228
- Satoh, S. & Fujimoto, K. Passivity Based Control of Stochastic Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 58 1139–1153 (2013) – 10.1109/tac.2012.2229791
- Fang, Z. & Gao, C. Stabilization of Input-Disturbed Stochastic Port-Hamiltonian Systems Via Passivity. IEEE Transactions on Automatic Control vol. 62 4159–4166 (2017) – 10.1109/tac.2017.2676619
- Haddad, W. M., Rajpurohit, T. & Jin, X. Energy-based feedback control for stochastic port-controlled Hamiltonian systems. Automatica vol. 97 134–142 (2018) – 10.1016/j.automatica.2018.07.031
- Liu, Y., Cao, G., Tang, S., Cai, X. & Peng, J. Energy‐based stabilisation and robust stabilisation of stochastic non‐linear systems. IET Control Theory & Applications vol. 12 318–325 (2018) – 10.1049/iet-cta.2017.0392
- Xu, S., Wang, W. & Chen, S. Energy‐based output regulation for stochastic port‐Hamiltonian systems. International Journal of Robust and Nonlinear Control vol. 31 1720–1734 (2020) – 10.1002/rnc.5377
- Zhang, Y. & Jiang, J. Bibliographical review on reconfigurable fault-tolerant control systems. Annual Reviews in Control vol. 32 229–252 (2008) – 10.1016/j.arcontrol.2008.03.008
- Benosman, M. A Survey of Some Recent Results on Nonlinear Fault Tolerant Control. Mathematical Problems in Engineering vol. 2010 (2009) – 10.1155/2010/586169
- Liu, Z., Theilliol, D., Yang, L., He, Y. & Han, J. Interconnection and Damping Assignment Passivity-Based Control Design Under Loss of Actuator Effectiveness. Journal of Intelligent & Robotic Systems vol. 100 29–45 (2020) – 10.1007/s10846-020-01170-8
- Benosman, M. & Lum, K.-Y. Application of passivity and cascade structure to robust control against loss of actuator effectiveness. International Journal of Robust and Nonlinear Control vol. 20 673–693 (2009) – 10.1002/rnc.1461
- Guerrero-Sánchez, M. E. et al. Robust IDA-PBC for under-actuated systems with inertia matrix dependent of the unactuated coordinates: application to a UAV carrying a load. Nonlinear Dynamics vol. 105 3225–3238 (2021) – 10.1007/s11071-021-06776-7
- Nasiri, A., Nguang, S. K., Swain, A. & Almakhles, D. Passive actuator fault tolerant control for a class of MIMO nonlinear systems with uncertainties. International Journal of Control vol. 92 693–704 (2017) – 10.1080/00207179.2017.1367102
- Shen, Q., Wang, D., Zhu, S. & Poh, E. K. Integral-Type Sliding Mode Fault-Tolerant Control for Attitude Stabilization of Spacecraft. IEEE Transactions on Control Systems Technology vol. 23 1131–1138 (2015) – 10.1109/tcst.2014.2354260
- Li, Y.-X. & Yang, G.-H. Adaptive asymptotic tracking control of uncertain nonlinear systems with input quantization and actuator faults. Automatica vol. 72 177–185 (2016) – 10.1016/j.automatica.2016.06.008
- Lin, X., Dong, H. & Yao, X. Tuning function-based adaptive backstepping fault-tolerant control for nonlinear systems with actuator faults and multiple disturbances. Nonlinear Dynamics vol. 91 2227–2239 (2017) – 10.1007/s11071-017-4011-2
- Hu, Q., Xiao, B. & Zhang, Y. Fault-Tolerant Attitude Control for Spacecraft Under Loss of Actuator Effectiveness. Journal of Guidance, Control, and Dynamics vol. 34 927–932 (2011) – 10.2514/1.49095
- Rotondo, Actuator and sensor fault estimation based on a proportional multiple-integral sliding mode observer for linear parameter varying systems with inexact scheduling parameters. Int. J. Robust Nonlinear Control (2021)
- Benosman, M. & Lum, K.-Y. Passive Actuators’ Fault-Tolerant Control for Affine Nonlinear Systems. IEEE Transactions on Control Systems Technology vol. 18 152–163 (2010) – 10.1109/tcst.2008.2009641
- Berman, N. & Shaked, U. H∞control for non-linear stochastic systems: the output-feedback case. International Journal of Control vol. 81 1733–1746 (2008) – 10.1080/00207170701840136
- Khasminskii, R. Stochastic Stability of Differential Equations. Stochastic Modelling and Applied Probability (Springer Berlin Heidelberg, 2012). doi:10.1007/978-3-642-23280-0 – 10.1007/978-3-642-23280-0
- Mao, X. Stochastic Versions of the LaSalle Theorem. Journal of Differential Equations vol. 153 175–195 (1999) – 10.1006/jdeq.1998.3552
- Zhang, W. & Chen, B.-S. State Feedback $H_\infty$ Control for a Class of Nonlinear Stochastic Systems. SIAM Journal on Control and Optimization vol. 44 1973–1991 (2006) – 10.1137/s0363012903423727
- Isidori, A. & Astolfi, A. Disturbance attenuation and H/sub infinity /-control via measurement feedback in nonlinear systems. IEEE Transactions on Automatic Control vol. 37 1283–1293 (1992) – 10.1109/9.159566
- Zairong Xi, Feng, G., Daizhan Cheng & Qiang Lu. Nonlinear decentralized saturated controller design for power systems. IEEE Transactions on Control Systems Technology vol. 11 539–547 (2003) – 10.1109/tcst.2003.813404