Energy‐based output regulation for stochastic port‐Hamiltonian systems
Authors
Song Xu, Wei Wang, Shengyuan Chen
Abstract
This article investigates the output regulation for stochastic port‐Hamiltonian systems (SPHSs) subject to sinusoidal disturbances. An energy‐based regulation scheme with an internal model unit is proposed by exploiting the stochastic Hamiltonian structure, which drives the tracking error to the origin while maintaining asymptotical stability in probability of the closed‐loop system. An energy‐based robust regulation scheme as well as an alternative condition is then developed without solving Hamilton–Jacobi–Issacs inequalities. The proposed regulators preserve the stochastic Hamiltonian structure of the disturbed SPHS by coordinate transformation. Hence the output regulation problems fall into the stabilization framework for SPHSs and there is no need to solve regulator equations. These results cover the stabilization of SPHSs and the output regulation of deterministic port‐Hamiltonian systems. Simulations on an inverted pendulum show the effectiveness of the proposed methods.
Citation
- Journal: International Journal of Robust and Nonlinear Control
- Year: 2021
- Volume: 31
- Issue: 5
- Pages: 1720–1734
- Publisher: Wiley
- DOI: 10.1002/rnc.5377
BibTeX
@article{Xu_2020,
title={{Energy‐based output regulation for stochastic port‐Hamiltonian systems}},
volume={31},
ISSN={1099-1239},
DOI={10.1002/rnc.5377},
number={5},
journal={International Journal of Robust and Nonlinear Control},
publisher={Wiley},
author={Xu, Song and Wang, Wei and Chen, Shengyuan},
year={2020},
pages={1720--1734}
}
References
- Bucy, R. S. Stability and positive supermartingales. Journal of Differential Equations vol. 1 151–155 (1965) – 10.1016/0022-0396(65)90016-1
- Kushner HJ, Stochastic Stability and Control (1967)
- Florchinger, P. A Passive System Approach to Feedback Stabilization of Nonlinear Control Stochastic Systems. SIAM Journal on Control and Optimization vol. 37 1848–1864 (1999) – 10.1137/s0363012997317478
- Mao, X. Stochastic Versions of the LaSalle Theorem. Journal of Differential Equations vol. 153 175–195 (1999) – 10.1006/jdeq.1998.3552
- Berman, N. & Shaked, U. H∞control for non-linear stochastic systems: the output-feedback case. International Journal of Control vol. 81 1733–1746 (2008) – 10.1080/00207170701840136
- Van der Schaft AJ, The Hamiltonian formulation of energy conserving physical systems with external ports. Arch Elektr Übertrag (1995)
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Transactions on Automatic Control vol. 45 1498–1502 (2000) – 10.1109/9.871758
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Wang, Y., Feng, G. & Cheng, D. Simultaneous stabilization of a set of nonlinear port-controlled Hamiltonian systems. Automatica vol. 43 403–415 (2007) – 10.1016/j.automatica.2006.09.008
- Xu, S. & Hou, X. A family of H∞ controllers for dissipative Hamiltonian systems. International Journal of Robust and Nonlinear Control vol. 22 1258–1269 (2011) – 10.1002/rnc.1753
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Transactions on Automatic Control vol. 58 1823–1828 (2013) – 10.1109/tac.2012.2235739
- Macchelli, A. Passivity-Based Control of Implicit Port-Hamiltonian Systems. SIAM Journal on Control and Optimization vol. 52 2422–2448 (2014) – 10.1137/130918228
- Sun, W. & Fu, B. Adaptive control of time‐varying uncertain non‐linear systems with input delay: a Hamiltonian approach. IET Control Theory & Applications vol. 10 1844–1858 (2016) – 10.1049/iet-cta.2015.1165
- Satoh, S. & Fujimoto, K. Passivity Based Control of Stochastic Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 58 1139–1153 (2013) – 10.1109/tac.2012.2229791
- Fang, Z. & Gao, C. Stabilization of Input-Disturbed Stochastic Port-Hamiltonian Systems Via Passivity. IEEE Transactions on Automatic Control vol. 62 4159–4166 (2017) – 10.1109/tac.2017.2676619
- Haddad, W. M., Rajpurohit, T. & Jin, X. Energy-based feedback control for stochastic port-controlled Hamiltonian systems. Automatica vol. 97 134–142 (2018) – 10.1016/j.automatica.2018.07.031
- Liu, Y., Cao, G., Tang, S., Cai, X. & Peng, J. Energy‐based stabilisation and robust stabilisation of stochastic non‐linear systems. IET Control Theory & Applications vol. 12 318–325 (2018) – 10.1049/iet-cta.2017.0392
- Isidori, A. & Byrnes, C. I. Output regulation of nonlinear systems. IEEE Transactions on Automatic Control vol. 35 131–140 (1990) – 10.1109/9.45168
- Huang, J. & Chen, Z. A General Framework for Tackling the Output Regulation Problem. IEEE Transactions on Automatic Control vol. 49 2203–2218 (2004) – 10.1109/tac.2004.839236
- Huang, J. Nonlinear Output Regulation. (2004) doi:10.1137/1.9780898718683 – 10.1137/1.9780898718683
- Gentili, L. & van der Schaft, A. Regulation and Input Disturbance Suppression for Port-Controlled Hamiltonian Systems 1. IFAC Proceedings Volumes vol. 36 205–210 (2003) – 10.1016/s1474-6670(17)38892-4
- Bonivento, C., Gentili, L. & Paoli, A. Internal model based fault tolerant control of a robot manipulator. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 5260-5265 Vol.5 (2004) doi:10.1109/cdc.2004.1429643 – 10.1109/cdc.2004.1429643
- Humaloja, J.-P., Paunonen, L. & Pohjolainen, S. Robust regulation for first-order port-hamiltonian systems. 2016 European Control Conference (ECC) 2203–2208 (2016) doi:10.1109/ecc.2016.7810618 – 10.1109/ecc.2016.7810618
- Humaloja, J.-P., Paunonen, L. & Pohjolainen, S. Robust regulation for first-order port-hamiltonian systems. 2016 European Control Conference (ECC) 2203–2208 (2016) doi:10.1109/ecc.2016.7810618 – 10.1109/ecc.2016.7810618
- Humaloja J, Robust regulation of infinite‐demensional port‐Hamiltonian systems. SIAM J Control Optim (2018)
- Yuzhen Wang, Daizhan Cheng, Chunwen Li & You Ge. Dissipative hamiltonian realization and energy-based L/sub 2/-disturbance attenuation control of multimachine power systems. IEEE Transactions on Automatic Control vol. 48 1428–1433 (2003) – 10.1109/tac.2003.815037
- Hudon, N., Hoffner, K. & Guay, M. Equivalence to dissipative Hamiltonian realization. 2008 47th IEEE Conference on Decision and Control 3163–3168 (2008) doi:10.1109/cdc.2008.4739446 – 10.1109/cdc.2008.4739446
- Khasminskii, R. Stochastic Stability of Differential Equations. Stochastic Modelling and Applied Probability (Springer Berlin Heidelberg, 2012). doi:10.1007/978-3-642-23280-0 – 10.1007/978-3-642-23280-0
- Zhang, W. & Chen, B.-S. State Feedback $H_\infty$ Control for a Class of Nonlinear Stochastic Systems. SIAM Journal on Control and Optimization vol. 44 1973–1991 (2006) – 10.1137/s0363012903423727
- Nikiforov, V. O. Adaptive Non-linear Tracking with Complete Compensation of Unknown Disturbances. European Journal of Control vol. 4 132–139 (1998) – 10.1016/s0947-3580(98)70107-4
- Protter, P. E. Stochastic Integration and Differential Equations. Stochastic Modelling and Applied Probability (Springer Berlin Heidelberg, 2005). doi:10.1007/978-3-662-10061-5 – 10.1007/978-3-662-10061-5
- van der Schaft, A. J. L/sub 2/-gain analysis of nonlinear systems and nonlinear state-feedback H/sub infinity / control. IEEE Transactions on Automatic Control vol. 37 770–784 (1992) – 10.1109/9.256331
- Isidori, A. & Astolfi, A. Disturbance attenuation and H/sub infinity /-control via measurement feedback in nonlinear systems. IEEE Transactions on Automatic Control vol. 37 1283–1293 (1992) – 10.1109/9.159566