Energy‐based stabilisation and robust stabilisation of stochastic non‐linear systems
Authors
Yan‐Hong Liu, Gui‐Zhou Cao, Shu‐Xia Tang, Xiu‐Shan Cai, Jin‐Zhu Peng
Abstract
This study proposes a constructive stabilisation and
Citation
- Journal: IET Control Theory & Applications
- Year: 2018
- Volume: 12
- Issue: 2
- Pages: 318–325
- Publisher: Institution of Engineering and Technology (IET)
- DOI: 10.1049/iet-cta.2017.0392
BibTeX
@article{Liu_2018,
title={{Energy‐based stabilisation and robust stabilisation of stochastic non‐linear systems}},
volume={12},
ISSN={1751-8652},
DOI={10.1049/iet-cta.2017.0392},
number={2},
journal={IET Control Theory & Applications},
publisher={Institution of Engineering and Technology (IET)},
author={Liu, Yan‐Hong and Cao, Gui‐Zhou and Tang, Shu‐Xia and Cai, Xiu‐Shan and Peng, Jin‐Zhu},
year={2018},
pages={318--325}
}
References
- Ma, J. & Yong, J. Forward-Backward Stochastic Differential Equations and Their Applications. Lecture Notes in Mathematics (Springer Berlin Heidelberg, 2007). doi:10.1007/978-3-540-48831-6 – 10.1007/978-3-540-48831-6
- Hua Deng & Krstic, M. Output-feedback stochastic nonlinear stabilization. IEEE Transactions on Automatic Control vol. 44 328–333 (1999) – 10.1109/9.746260
- Mao, X. Stochastic Versions of the LaSalle Theorem. Journal of Differential Equations vol. 153 175–195 (1999) – 10.1006/jdeq.1998.3552
- Florchinger, P. Lyapunov-Like Techniques for Stochastic Stability. SIAM Journal on Control and Optimization vol. 33 1151–1169 (1995) – 10.1137/s0363012993252309
- Hua Deng, Krstic, M. & Williams, R. J. Stabilization of stochastic nonlinear systems driven by noise of unknown covariance. IEEE Transactions on Automatic Control vol. 46 1237–1253 (2001) – 10.1109/9.940927
- Niu, Y., Ho, D. W. C. & Wang, X. Robust $H_{\infty}$ Control for Nonlinear Stochastic Systems: A Sliding-Mode Approach. IEEE Transactions on Automatic Control vol. 53 1695–1701 (2008) – 10.1109/tac.2008.929376
- Berman, N. & Shaked, U. -like control for nonlinear stochastic systems. Systems & Control Letters vol. 55 247–257 (2006) – 10.1016/j.sysconle.2005.07.005
- Zhang, W. & Chen, B.-S. State Feedback $H_\infty$ Control for a Class of Nonlinear Stochastic Systems. SIAM Journal on Control and Optimization vol. 44 1973–1991 (2006) – 10.1137/s0363012903423727
- Zhang, W., Chen, B.-S., Tang, H., Sheng, L. & Gao, M. Some Remarks on General Nonlinear Stochastic $H_{\infty }$ Control With State, Control, and Disturbance-Dependent Noise. IEEE Transactions on Automatic Control vol. 59 237–242 (2014) – 10.1109/tac.2013.2270073
- Florchinger, P. A Passive System Approach to Feedback Stabilization of Nonlinear Control Stochastic Systems. SIAM Journal on Control and Optimization vol. 37 1848–1864 (1999) – 10.1137/s0363012997317478
- Florchinger, P. Global asymptotic stabilisation in probability of nonlinear stochastic systems via passivity. International Journal of Control vol. 89 1406–1415 (2016) – 10.1080/00207179.2015.1132009
- Lin, Z., Liu, J., Lin, Y. & Zhang, W. Nonlinear stochastic passivity, feedback equivalence and global stabilization. International Journal of Robust and Nonlinear Control vol. 22 999–1018 (2011) – 10.1002/rnc.1742
- Rufino Ferreira, A. S., Arcak, M. & Sontag, E. D. Stability certification of large scale stochastic systems using dissipativity. Automatica vol. 48 2956–2964 (2012) – 10.1016/j.automatica.2012.07.001
- Wu, Z., Cui, M., Xie, X. & Shi, P. Theory of Stochastic Dissipative Systems. IEEE Transactions on Automatic Control vol. 56 1650–1655 (2011) – 10.1109/tac.2011.2121370
- Rajpurohit, T. & Haddad, W. M. Dissipativity Theory for Nonlinear Stochastic Dynamical Systems. IEEE Transactions on Automatic Control vol. 62 1684–1699 (2017) – 10.1109/tac.2016.2598474
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Fujimoto, K., Sakai, S. & Sugie, T. Passivity based control of a class of Hamiltonian systems with nonholonomic constraints. Automatica vol. 48 3054–3063 (2012) – 10.1016/j.automatica.2012.08.032
- Wang, Y., Feng, G., Cheng, D. & Liu, Y. Adaptive $L^2$ disturbance attenuation control of multi-machine power systems with SMES units. Automatica vol. 42 1121–1132 (2006) – 10.1016/j.automatica.2006.03.014
- Satoh, S. & Fujimoto, K. Passivity Based Control of Stochastic Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 58 1139–1153 (2013) – 10.1109/tac.2012.2229791
- Satoh, S. & Saeki, M. Bounded stabilisation of stochastic port-Hamiltonian systems. International Journal of Control vol. 87 1573–1582 (2014) – 10.1080/00207179.2014.880127
- Liu Y.H.. Proc. American Control Conf. (2016)
- Wang Y.Z.. Generalized Hamilton control system theory – realization, control and applications (2007)
- Cannon R.H.. Dynamics of physical systems (1976)
- Hoagg, J. B. & Seigler, T. M. Filtered feedback linearization for nonlinear systems with unknown disturbance. Systems & Control Letters vol. 62 613–625 (2013) – 10.1016/j.sysconle.2013.04.002