Energy‐based stabilisation and robust stabilisation of stochastic non‐linear systems
Authors
Yan‐Hong Liu, Gui‐Zhou Cao, Shu‐Xia Tang, Xiu‐Shan Cai, Jin‐Zhu Peng
Abstract
This study proposes a constructive stabilisation and robust controller design method for stochastic non‐linear systems from a novel dissipation analysis and energy point of view. First, the authors propose a sufficient condition for the dissipation of stochastic Hamiltonian systems and discuss the energy property of the systems, which will be used for the stability analysis and feedback controller design. Then, the authors show that the system is (asymptotically) stable in probability if it is (strictly) dissipative. By completing the Hamiltonian realisation of the stochastic non‐linear systems, a feedback controller is proposed to stabilise the system under the condition of dissipation and zero state detectability. For stochastic non‐linear systems subjected to external disturbances, an energy‐based controller was proposed by choosing the Hamiltonian function to construct a solution of Hamiltonian–Jacobi inequality. Finally, the effectiveness of the proposed method was illustrated via the inverted pendulum systems.
Citation
- Journal: IET Control Theory & Applications
- Year: 2018
- Volume: 12
- Issue: 2
- Pages: 318–325
- Publisher: Institution of Engineering and Technology (IET)
- DOI: 10.1049/iet-cta.2017.0392
BibTeX
@article{Liu_2018,
title={{Energy‐based stabilisation and robust stabilisation of stochastic non‐linear systems}},
volume={12},
ISSN={1751-8652},
DOI={10.1049/iet-cta.2017.0392},
number={2},
journal={IET Control Theory & Applications},
publisher={Institution of Engineering and Technology (IET)},
author={Liu, Yan‐Hong and Cao, Gui‐Zhou and Tang, Shu‐Xia and Cai, Xiu‐Shan and Peng, Jin‐Zhu},
year={2018},
pages={318--325}
}
References
- Ma, J. & Yong, J. Forward-Backward Stochastic Differential Equations and Their Applications. Lecture Notes in Mathematics (Springer Berlin Heidelberg, 2007). doi:10.1007/978-3-540-48831-6 – 10.1007/978-3-540-48831-6
- Hua Deng & Krstic, M. Output-feedback stochastic nonlinear stabilization. IEEE Transactions on Automatic Control vol. 44 328–333 (1999) – 10.1109/9.746260
- Mao, X. Stochastic Versions of the LaSalle Theorem. Journal of Differential Equations vol. 153 175–195 (1999) – 10.1006/jdeq.1998.3552
- Florchinger, P. Lyapunov-Like Techniques for Stochastic Stability. SIAM Journal on Control and Optimization vol. 33 1151–1169 (1995) – 10.1137/s0363012993252309
- Hua Deng, Krstic, M. & Williams, R. J. Stabilization of stochastic nonlinear systems driven by noise of unknown covariance. IEEE Transactions on Automatic Control vol. 46 1237–1253 (2001) – 10.1109/9.940927
- Niu, Y., Ho, D. W. C. & Wang, X. Robust $H_{\infty}$ Control for Nonlinear Stochastic Systems: A Sliding-Mode Approach. IEEE Transactions on Automatic Control vol. 53 1695–1701 (2008) – 10.1109/tac.2008.929376
- Berman, N. & Shaked, U. -like control for nonlinear stochastic systems. Systems & Control Letters vol. 55 247–257 (2006) – 10.1016/j.sysconle.2005.07.005
- Zhang, W. & Chen, B.-S. State Feedback $H_\infty$ Control for a Class of Nonlinear Stochastic Systems. SIAM Journal on Control and Optimization vol. 44 1973–1991 (2006) – 10.1137/s0363012903423727
- Zhang, W., Chen, B.-S., Tang, H., Sheng, L. & Gao, M. Some Remarks on General Nonlinear Stochastic $H_{\infty }$ Control With State, Control, and Disturbance-Dependent Noise. IEEE Transactions on Automatic Control vol. 59 237–242 (2014) – 10.1109/tac.2013.2270073
- Florchinger, P. A Passive System Approach to Feedback Stabilization of Nonlinear Control Stochastic Systems. SIAM Journal on Control and Optimization vol. 37 1848–1864 (1999) – 10.1137/s0363012997317478
- Florchinger, P. Global asymptotic stabilisation in probability of nonlinear stochastic systems via passivity. International Journal of Control vol. 89 1406–1415 (2016) – 10.1080/00207179.2015.1132009
- Lin, Z., Liu, J., Lin, Y. & Zhang, W. Nonlinear stochastic passivity, feedback equivalence and global stabilization. International Journal of Robust and Nonlinear Control vol. 22 999–1018 (2011) – 10.1002/rnc.1742
- Rufino Ferreira, A. S., Arcak, M. & Sontag, E. D. Stability certification of large scale stochastic systems using dissipativity. Automatica vol. 48 2956–2964 (2012) – 10.1016/j.automatica.2012.07.001
- Wu, Z., Cui, M., Xie, X. & Shi, P. Theory of Stochastic Dissipative Systems. IEEE Transactions on Automatic Control vol. 56 1650–1655 (2011) – 10.1109/tac.2011.2121370
- Rajpurohit, T. & Haddad, W. M. Dissipativity Theory for Nonlinear Stochastic Dynamical Systems. IEEE Transactions on Automatic Control vol. 62 1684–1699 (2017) – 10.1109/tac.2016.2598474
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Fujimoto, K., Sakai, S. & Sugie, T. Passivity based control of a class of Hamiltonian systems with nonholonomic constraints. Automatica vol. 48 3054–3063 (2012) – 10.1016/j.automatica.2012.08.032
- Wang, Y., Feng, G., Cheng, D. & Liu, Y. Adaptive $L^2$ disturbance attenuation control of multi-machine power systems with SMES units. Automatica vol. 42 1121–1132 (2006) – 10.1016/j.automatica.2006.03.014
- Satoh, S. & Fujimoto, K. Passivity Based Control of Stochastic Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 58 1139–1153 (2013) – 10.1109/tac.2012.2229791
- Satoh, S. & Saeki, M. Bounded stabilisation of stochastic port-Hamiltonian systems. International Journal of Control vol. 87 1573–1582 (2014) – 10.1080/00207179.2014.880127
- Liu Y.H.. Proc. American Control Conf. (2016)
- Wang Y.Z.. Generalized Hamilton control system theory – realization, control and applications (2007)
- Cannon R.H.. Dynamics of physical systems (1976)
- Hoagg, J. B. & Seigler, T. M. Filtered feedback linearization for nonlinear systems with unknown disturbance. Systems & Control Letters vol. 62 613–625 (2013) – 10.1016/j.sysconle.2013.04.002