Robust, distributed and optimal control of smart grids
Authors
Juan E. Machado, Saeed Ahmed, Jacquelien M. A. Scherpen, Michele Cucuzzella
Abstract
These lecture notes provide an overview of recent research on the modeling and control of smart grids using distributed algorithms. In particular, energy-based modeling of general AC power networks using the framework of port-Hamiltonian systems theory is presented, and the relevance of such a formulation for stability analysis and control design is discussed. Low-level control design aspects (at a physical layer) for DC microgrids are also considered, achieving objectives such as fair load sharing among distributed generation units and (average) voltage regulation using limited data and measurements from the system. Finally, general frameworks for the optimal control of smart grids are introduced to consider both physical and economic constraints and exploit the flexibility brought up by storage devices and demand response from the grid’s prosumers.
Citation
- Journal: EPJ Web of Conferences
- Year: 2022
- Volume: 268
- Issue:
- Pages: 00016
- Publisher: EDP Sciences
- DOI: 10.1051/epjconf/202226800016
BibTeX
@article{Machado_2022,
title={{Robust, distributed and optimal control of smart grids}},
volume={268},
ISSN={2100-014X},
DOI={10.1051/epjconf/202226800016},
journal={EPJ Web of Conferences},
publisher={EDP Sciences},
author={Machado, Juan E. and Ahmed, Saeed and Scherpen, Jacquelien M. A. and Cucuzzella, Michele},
editor={Cifarelli, L. and Romanelli, F.},
year={2022},
pages={00016}
}
References
- Mancarella, P. MES (multi-energy systems): An overview of concepts and evaluation models. Energy 65, 1–17 (2014) – 10.1016/j.energy.2013.10.041
- Fang, X., Misra, S., Xue, G. & Yang, D. Smart Grid — The New and Improved Power Grid: A Survey. IEEE Commun. Surv. Tutorials 14, 944–980 (2012) – 10.1109/surv.2011.101911.00087
- Kroposki, B. et al. Autonomous Energy Grids: Controlling the Future Grid With Large Amounts of Distributed Energy Resources. IEEE Power and Energy Mag. 18, 37–46 (2020) – 10.1109/mpe.2020.3014540
- Fiaz, S., Zonetti, D., Ortega, R., Scherpen, J. M. A. & van der Schaft, A. J. A port-Hamiltonian approach to power network modeling and analysis. European Journal of Control 19, 477–485 (2013) – 10.1016/j.ejcon.2013.09.002
- Trip, S., Cucuzzella, M., Cheng, X. & Scherpen, J. Distributed Averaging Control for Voltage Regulation and Current Sharing in DC Microgrids. IEEE Control Syst. Lett. 3, 174–179 (2019) – 10.1109/lcsys.2018.2857559
- Jafarian, M., Scherpen, J. M. A., Loeff, K., Mulder, M. & Aiello, M. A combined nodal and uniform pricing mechanism for congestion management in distribution power networks. Electric Power Systems Research 180, 106088 (2020) – 10.1016/j.epsr.2019.106088
- Nguyen, D. B., Alkano, D. & Scherpen, J. M. A. The Optimal Control Problem in Smart Energy Grids. Power Systems 95–111 (2016) doi:10.1007/978-3-319-28077-6_7 – 10.1007/978-3-319-28077-6_7
- Lasseter, R. H. MicroGrids. 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309) vol. 1 305–308 – 10.1109/pesw.2002.985003
- Mancarella, P., Andersson, G., Pecas-Lopes, J. A. & Bell, K. R. W. Modelling of integrated multi-energy systems: Drivers, requirements, and opportunities. 2016 Power Systems Computation Conference (PSCC) 1–22 (2016) doi:10.1109/pscc.2016.7541031 – 10.1109/pscc.2016.7541031
- Geng, S., Vrakopoulou, M. & Hiskens, I. A. Optimal Capacity Design and Operation of Energy Hub Systems. Proc. IEEE 108, 1475–1495 (2020) – 10.1109/jproc.2020.3009323
- van der Schaft, A. Port-Hamiltonian Modeling for Control. Annu. Rev. Control Robot. Auton. Syst. 3, 393–416 (2020) – 10.1146/annurev-control-081219-092250
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. (2014) doi:10.1561/9781601987877 – 10.1561/9781601987877
- Hauschild, S.-A. et al. Port-Hamiltonian Modeling of District Heating Networks. Differential-Algebraic Equations Forum 333–355 (2020) doi:10.1007/978-3-030-53905-4_11 – 10.1007/978-3-030-53905-4_11
- van der Schaft, A. Characterization and partial synthesis of the behavior of resistive circuits at their terminals. Systems & Control Letters 59, 423–428 (2010) – 10.1016/j.sysconle.2010.05.005
- Schiffer, J. et al. A survey on modeling of microgrids—From fundamental physics to phasors and voltage sources. Automatica 74, 135–150 (2016) – 10.1016/j.automatica.2016.07.036
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. Automat. Contr. 45, 1498–1502 (2000) – 10.1109/9.871758
- Slotine, J.-J. E. Putting physics in control-the example of robotics. IEEE Control Syst. Mag. 8, 12–18 (1988) – 10.1109/37.9164
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- Trip, S., Cucuzzella, M., De Persis, C., van der Schaft, A. & Ferrara, A. Passivity-Based Design of Sliding Modes for Optimal Load Frequency Control. IEEE Trans. Contr. Syst. Technol. 27, 1893–1906 (2019) – 10.1109/tcst.2018.2841844
- Trip, S., Cucuzzella, M., De Persis, C., Ferrara, A. & Scherpen, J. M. A. Robust load frequency control of nonlinear power networks. International Journal of Control 93, 346–359 (2018) – 10.1080/00207179.2018.1557338
- Silani, A., Cucuzzella, M., Scherpen, J. M. A. & Yazdanpanah, M. J. Output Regulation for Load Frequency Control. IEEE Trans. Contr. Syst. Technol. 30, 1130–1144 (2022) – 10.1109/tcst.2021.3099096
- Justo, J. J., Mwasilu, F., Lee, J. & Jung, J.-W. AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renewable and Sustainable Energy Reviews 24, 387–405 (2013) – 10.1016/j.rser.2013.03.067
- Zhao, J. & Dörfler, F. Distributed control and optimization in DC microgrids. Automatica 61, 18–26 (2015) – 10.1016/j.automatica.2015.07.015
- De Persis, C., Weitenberg, E. R. A. & Dörfler, F. A power consensus algorithm for DC microgrids. Automatica 89, 364–375 (2018) – 10.1016/j.automatica.2017.12.026
- GAO, F., KANG, R., CAO, J. & YANG, T. Primary and secondary control in DC microgrids: a review. J. Mod. Power Syst. Clean Energy 7, 227–242 (2018) – 10.1007/s40565-018-0466-5
- Cucuzzella, M., Lazzari, R., Kawano, Y., Kosaraju, K. C. & Scherpen, J. M. A. Robust Passivity-Based Control of Boost Converters in DC Microgrids⋆. 2019 IEEE 58th Conference on Decision and Control (CDC) (2019) doi:10.1109/cdc40024.2019.9029657 – 10.1109/cdc40024.2019.9029657
- Machado, J. E. & Schiffer, J. A passivity-inspired design of power-voltage droop controllers for DC microgrids with electrical network dynamics. 2020 59th IEEE Conference on Decision and Control (CDC) 3060–3065 (2020) doi:10.1109/cdc42340.2020.9303758 – 10.1109/cdc42340.2020.9303758
- Kosaraju, K. C., Cucuzzella, M., Scherpen, J. M. A. & Pasumarthy, R. Differentiation and Passivity for Control of Brayton–Moser Systems. IEEE Trans. Automat. Contr. 66, 1087–1101 (2021) – 10.1109/tac.2020.2994317
- Silani, A., Cucuzzella, M., Scherpen, J. M. A. & Yazdanpanah, M. J. Output Regulation for Voltage Control in DC Networks With Time-Varying Loads. IEEE Control Syst. Lett. 5, 797–802 (2021) – 10.1109/lcsys.2020.3005775
- Cucuzzella, M. et al. Distributed Control of DC Grids: Integrating Prosumers’ Motives. IEEE Trans. Power Syst. 37, 3299–3310 (2022) – 10.1109/tpwrs.2021.3109024
- Silani, A., Cucuzzella, M., Scherpen, J. M. A. & Yazdanpanah, M. J. Robust output regulation for voltage control in DC networks with time-varying loads. Automatica 135, 109997 (2022) – 10.1016/j.automatica.2021.109997
- Cucuzzella, M. et al. A Robust Consensus Algorithm for Current Sharing and Voltage Regulation in DC Microgrids. IEEE Trans. Contr. Syst. Technol. 27, 1583–1595 (2019) – 10.1109/tcst.2018.2834878
- Trip, S. et al. Distributed Averaging Control for Voltage Regulation and Current Sharing in DC Microgrids: Modelling and Experimental Validation. IFAC-PapersOnLine 51, 242–247 (2018) – 10.1016/j.ifacol.2018.12.042
- Ferguson, J., Cucuzzella, M. & Scherpen, J. M. A. Exponential Stability and Local ISS for DC Networks. IEEE Control Syst. Lett. 5, 893–898 (2021) – 10.1109/lcsys.2020.3007222
- Cucuzzella, M., Trip, S., Ferrara, A. & Scherpen, J. Cooperative Voltage Control in AC Microgrids. 2018 IEEE Conference on Decision and Control (CDC) 6723–6728 (2018) doi:10.1109/cdc.2018.8618898 – 10.1109/cdc.2018.8618898
- Boyd, S. & Vandenberghe, L. Convex Optimization. (2004) doi:10.1017/cbo9780511804441 – 10.1017/cbo9780511804441
- Giselsson, P. & Rantzer, A. On Feasibility, Stability and Performance in Distributed Model Predictive Control. IEEE Trans. Automat. Contr. 59, 1031–1036 (2014) – 10.1109/tac.2013.2285779
- Nguyen, D. B., Scherpen, J. M. A. & Bliek, F. Distributed Optimal Control of Smart Electricity Grids With Congestion Management. IEEE Trans. Automat. Sci. Eng. 14, 494–504 (2017) – 10.1109/tase.2017.2664061
- Larsen, G. K. H., van Foreest, N. D. & Scherpen, J. M. A. Power supply–demand balance in a Smart Grid: An information sharing model for a market mechanism. Applied Mathematical Modelling 38, 3350–3360 (2014) – 10.1016/j.apm.2013.11.042
- Larsen, G. K. H., van Foreest, N. D. & Scherpen, J. M. A. Distributed Control of the Power Supply-Demand Balance. IEEE Trans. Smart Grid 4, 828–836 (2013) – 10.1109/tsg.2013.2242907
- Larsen, G. K. H., van Foreest, N. D. & Scherpen, J. M. A. Distributed MPC Applied to a Network of Households With Micro-CHP and Heat Storage. IEEE Trans. Smart Grid 5, 2106–2114 (2014) – 10.1109/tsg.2014.2318901
- Alkano, D. & Scherpen, J. M. A. Distributed Supply Coordination for Power-to-Gas Facilities Embedded in Energy Grids. IEEE Trans. Smart Grid 9, 1012–1022 (2018) – 10.1109/tsg.2016.2574568
- Alkano, D., Scherpen, J. M. A. & Chorfi, Y. Asynchronous Distributed Control of Biogas Supply and Multienergy Demand. IEEE Trans. Automat. Sci. Eng. 14, 558–572 (2017) – 10.1109/tase.2017.2648789
- Cenedese, C. et al. Charging plug-in electric vehicles as a mixed-integer aggregative game. 2019 IEEE 58th Conference on Decision and Control (CDC) (2019) doi:10.1109/cdc40024.2019.9030152 – 10.1109/cdc40024.2019.9030152
- Dall’Anese, E., Mancarella, P. & Monti, A. Unlocking Flexibility: Integrated Optimization and Control of Multienergy Systems. IEEE Power and Energy Mag. 15, 43–52 (2017) – 10.1109/mpe.2016.2625218
- De Persis, C. & Kallesoe, C. S. Pressure Regulation in Nonlinear Hydraulic Networks by Positive and Quantized Controls. IEEE Trans. Contr. Syst. Technol. 19, 1371–1383 (2011) – 10.1109/tcst.2010.2094619
- Scholten, T., De Persis, C. & Tesi, P. Modeling and Control of Heat Networks With Storage: The Single-Producer Multiple-Consumer Case. IEEE Trans. Contr. Syst. Technol. 25, 414–428 (2017) – 10.1109/tcst.2016.2565386
- Strehle, F., Vieth, J., Pfeifer, M. & Hohmann, S. Passivity-Based Stability Analysis of Hydraulic Equilibria in 4th Generation District Heating Networks. IFAC-PapersOnLine 54, 261–266 (2021) – 10.1016/j.ifacol.2021.11.088
- Machado, J. E., Cucuzzella, M., Pronk, N. & Scherpen, J. M. A. Adaptive Control for Flow and Volume Regulation in Multi-Producer District Heating Systems. IEEE Control Syst. Lett. 6, 794–799 (2022) – 10.1109/lcsys.2021.3085702
- Machado, J. E., Cucuzzella, M. & Scherpen, J. M. A. Modeling and passivity properties of multi-producer district heating systems. Automatica 142, 110397 (2022) – 10.1016/j.automatica.2022.110397