Reciprocity of Nonlinear Systems
Authors
Abstract
One of the key contributions of the 1972 seminal paper by Willems was the analysis of symmetry (also called reciprocity) of input-state-output systems, both from an external (input-output) and internal (state) point of view. The developed theory also included the combination of reciprocity with passivity, and the consideration of relaxation systems, which are passive reciprocal systems without any oscillatory behavior. The paper was motivated from a fundamental system-theoretic point of view (how is external structure reflected into internal structure), as well as by a wide range of application areas, including electrical network synthesis, thermodynamics, and viscoelastic materials. On the other hand, the obtained results are for linear systems, and the extension to the nonlinear case, even for subclasses of nonlinear systems, is far from trivial. The present paper aims at taking some steps into this direction.
Citation
- Journal: SIAM Journal on Control and Optimization
- Year: 2024
- Volume: 62
- Issue: 6
- Pages: 3019–3041
- Publisher: Society for Industrial & Applied Mathematics (SIAM)
- DOI: 10.1137/24m1629250
BibTeX
@article{van_der_Schaft_2024,
title={{Reciprocity of Nonlinear Systems}},
volume={62},
ISSN={1095-7138},
DOI={10.1137/24m1629250},
number={6},
journal={SIAM Journal on Control and Optimization},
publisher={Society for Industrial & Applied Mathematics (SIAM)},
author={van der Schaft, Arjan},
year={2024},
pages={3019--3041}
}
References
- Apostol T. M.. Calculus (1967)
- Arnold, V. I. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics (Springer New York, 1989). doi:10.1007/978-1-4757-2063-1 – 10.1007/978-1-4757-2063-1
- Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quarterly of Applied Mathematics vol. 22 1–33 (1964) – 10.1090/qam/169746
- Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. II. Quarterly of Applied Mathematics vol. 22 81–104 (1964) – 10.1090/qam/169747
- Basto Goncalves J. A.. Nonlinear Controllability and Observability with Applications to Gradient Systems (1981)
- Camlibel, M. K., Iannelli, L. & Vasca, F. Passivity and complementarity. Mathematical Programming vol. 145 531–563 (2013) – 10.1007/s10107-013-0678-4
- Camlibel, M. K. & van der Schaft, A. J. Port-Hamiltonian Systems Theory and Monotonicity. SIAM Journal on Control and Optimization vol. 61 2193–2221 (2023) – 10.1137/22m1503749
- Cortés, J., van der Schaft, A. & Crouch, P. E. Characterization of Gradient Control Systems. SIAM Journal on Control and Optimization vol. 44 1192–1214 (2005) – 10.1137/s0363012903425568
- Crouch, P. E. Geometric structures in systems theory. IEE Proceedings D Control Theory and Applications vol. 128 242 (1981) – 10.1049/ip-d.1981.0051
- Variational and Hamiltonian Control Systems. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 1987). doi:10.1007/bfb0042858 – 10.1007/bfb0042858
- Duistermaat, J. J. On Hessian Riemannian structures. Asian Journal of Mathematics vol. 5 79–91 (2001) – 10.4310/ajm.2001.v5.n1.a6
- Gordon, W. B. On the Diffeomorphisms of Euclidean Space. The American Mathematical Monthly vol. 79 755–759 (1972) – 10.1080/00029890.1972.11993118
- Pates, R. Passive and Reciprocal Networks: From Simple Models to Simple Optimal Controllers. IEEE Control Systems vol. 42 73–92 (2022) – 10.1109/mcs.2022.3157116
- Rockafellar, R. T. & Wets, R. J. B. Variational Analysis. Grundlehren der mathematischen Wissenschaften (Springer Berlin Heidelberg, 1998). doi:10.1007/978-3-642-02431-3 – 10.1007/978-3-642-02431-3
- Shima, H. & Yagi, K. Geometry of Hessian manifolds. Differential Geometry and its Applications vol. 7 277–290 (1997) – 10.1016/s0926-2245(96)00057-5
- van der Schaft, A. J. On The Relation Between Port-Hamiltonian And Gradient Systems. IFAC Proceedings Volumes vol. 44 3321–3326 (2011) – 10.3182/20110828-6-it-1002.00555
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- van der Schaft, A. Port-Hamiltonian Modeling for Control. Annual Review of Control, Robotics, and Autonomous Systems vol. 3 393–416 (2020) – 10.1146/annurev-control-081219-092250
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. & Maschke, B. Dirac and Lagrange Algebraic Constraints in Nonlinear Port-Hamiltonian Systems. Vietnam Journal of Mathematics vol. 48 929–939 (2020) – 10.1007/s10013-020-00419-x
- van der Schaft, A. & Mehrmann, V. Linear port-Hamiltonian DAE systems revisited. Systems & Control Letters vol. 177 105564 (2023) – 10.1016/j.sysconle.2023.105564
- van der Schaft, A. & Stegink, T. Perspectives in modeling for control of power networks. Annual Reviews in Control vol. 41 119–132 (2016) – 10.1016/j.arcontrol.2016.04.017
- Willems, J. C. Dissipative dynamical systems Part II: Linear systems with quadratic supply rates. Archive for Rational Mechanics and Analysis vol. 45 352–393 (1972) – 10.1007/bf00276494
- Willems, J. C. Realization of systems with internal passivity and symmetry constraints. Journal of the Franklin Institute vol. 301 605–621 (1976) – 10.1016/0016-0032(76)90081-8