Port-Hamiltonian Systems Theory and Monotonicity
Authors
M. K. Camlibel, A. J. van der Schaft
Citation
- Journal: SIAM Journal on Control and Optimization
- Year: 2023
- Volume: 61
- Issue: 4
- Pages: 2193–2221
- Publisher: Society for Industrial & Applied Mathematics (SIAM)
- DOI: 10.1137/22m1503749
BibTeX
@article{Camlibel_2023,
title={{Port-Hamiltonian Systems Theory and Monotonicity}},
volume={61},
ISSN={1095-7138},
DOI={10.1137/22m1503749},
number={4},
journal={SIAM Journal on Control and Optimization},
publisher={Society for Industrial & Applied Mathematics (SIAM)},
author={Camlibel, M. K. and van der Schaft, A. J.},
year={2023},
pages={2193--2221}
}
References
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- van der Schaft A. J., -Gain and Passivity Techniques in Nonlinear Control, Communications and Control Engineering (2017)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. (2014) doi:10.1561/9781601987877 – 10.1561/9781601987877
- Desoer, C. A. & Vidyasagar, M. Feedback Systems. (2009) doi:10.1137/1.9780898719055 – 10.1137/1.9780898719055
- Parikh N., Proximal Algorithms (2013)
- Brézis H., Operateurs Maximaux Monotones (1973)
- Bauschke, H. H. & Combettes, P. L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics (Springer New York, 2011). doi:10.1007/978-1-4419-9467-7 – 10.1007/978-1-4419-9467-7
- Rockafellar, R. T. & Wets, R. J. B. Variational Analysis. Grundlehren der mathematischen Wissenschaften (Springer Berlin Heidelberg, 1998). doi:10.1007/978-3-642-02431-3 – 10.1007/978-3-642-02431-3
- Camlibel, K., Iannelli, L. & Tanwani, A. Convergence of proximal solutions for evolution inclusions with time-dependent maximal monotone operators. Mathematical Programming vol. 194 1017–1059 (2021) – 10.1007/s10107-021-01666-7
- Camlibel, M. K. & Schumacher, J. M. Linear passive systems and maximal monotone mappings. Mathematical Programming vol. 157 397–420 (2015) – 10.1007/s10107-015-0945-7
- Bürger, M., Zelazo, D. & Allgöwer, F. Duality and network theory in passivity-based cooperative control. Automatica vol. 50 2051–2061 (2014) – 10.1016/j.automatica.2014.06.002
- Hines, G. H., Arcak, M. & Packard, A. K. Equilibrium-independent passivity: A new definition and numerical certification. Automatica vol. 47 1949–1956 (2011) – 10.1016/j.automatica.2011.05.011
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- van der Schaft A. J., Archiv für Elektronik und Übertragungstechnik (1995)
- Mehrmann V., Math. Control Signals Systems (2023)
- van der Schaft, A. & Mehrmann, V. Linear port-Hamiltonian DAE systems revisited. Systems & Control Letters vol. 177 105564 (2023) – 10.1016/j.sysconle.2023.105564
- Ryu, E. K. & Yin, W. Large-Scale Convex Optimization. (2022) doi:10.1017/9781009160865 – 10.1017/9781009160865
- Arrow K. J., Studies in Linear and Non-linear Programming (1958)
- Stegink, T., De Persis, C. & van der Schaft, A. A Unifying Energy-Based Approach to Stability of Power Grids With Market Dynamics. IEEE Transactions on Automatic Control vol. 62 2612–2622 (2017) – 10.1109/tac.2016.2613901
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- Khatri, C. G. & Mitra, S. K. Hermitian and Nonnegative Definite Solutions of Linear Matrix Equations. SIAM Journal on Applied Mathematics vol. 31 579–585 (1976) – 10.1137/0131050
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Bertsekas D. P., Convex Optimization Theory (2009)
- Bregman, L. M. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics vol. 7 200–217 (1967) – 10.1016/0041-5553(67)90040-7
- Pavlov, A. & Marconi, L. Incremental passivity and output regulation. Systems & Control Letters vol. 57 400–409 (2008) – 10.1016/j.sysconle.2007.10.008
- Angeli, D. A Lyapunov approach to incremental stability properties. IEEE Transactions on Automatic Control vol. 47 410–421 (2002) – 10.1109/9.989067
- Variational and Hamiltonian Control Systems. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 1987). doi:10.1007/bfb0042858 – 10.1007/bfb0042858
- LOHMILLER, W. & SLOTINE, J.-J. E. On Contraction Analysis for Non-linear Systems. Automatica vol. 34 683–696 (1998) – 10.1016/s0005-1098(98)00019-3