Robust dynamic state feedback for underactuated systems with linearly parameterized disturbances
Authors
Enrico Franco, Ferdinando Rodriguez y Baena, Alessandro Astolfi
Abstract
This article investigates the control problem for underactuated port‐controlled Hamiltonian systems with multiple linearly parameterized additive disturbances including matched, unmatched, constant, and state‐dependent components. The notion of algebraic solution of the matching equations is employed to design an extension of the interconnection and damping assignment passivity‐based control methodology that does not rely on the solution of partial differential equations. The result is a dynamic state‐feedback that includes a disturbance compensation term, where the unknown parameters are estimated adaptively. A simplified implementation of the proposed approach for underactuated mechanical systems is detailed. The effectiveness of the controller is demonstrated with numerical simulations for the magnetic‐levitated‐ball system and for the ball‐on‐beam system.
Citation
- Journal: International Journal of Robust and Nonlinear Control
- Year: 2020
- Volume: 30
- Issue: 10
- Pages: 4112–4128
- Publisher: Wiley
- DOI: 10.1002/rnc.4985
BibTeX
@article{Franco_2020,
title={{Robust dynamic state feedback for underactuated systems with linearly parameterized disturbances}},
volume={30},
ISSN={1099-1239},
DOI={10.1002/rnc.4985},
number={10},
journal={International Journal of Robust and Nonlinear Control},
publisher={Wiley},
author={Franco, Enrico and Rodriguez y Baena, Ferdinando and Astolfi, Alessandro},
year={2020},
pages={4112--4128}
}
References
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Automat. Contr. 47, 1218–1233 (2002) – 10.1109/tac.2002.800770
- D. Mahindrakar, A., Astolfi, A., Ortega, R. & Viola, G. Further constructive results on interconnection and damping assignment control of mechanical systems: the Acrobot example. Int. J. Robust Nonlinear Control 16, 671–685 (2006) – 10.1002/rnc.1088
- Aoki, T., Yamashita, Y. & Tsubakino, D. Vibration suppression for mass‐spring‐damper systems with a tuned mass damper using interconnection and damping assignment passivity‐based control. Intl J Robust & Nonlinear 26, 235–251 (2015) – 10.1002/rnc.3307
- Acosta, J. A., Ortega, R., Astolfi, A. & Mahindrakar, A. D. Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one. IEEE Trans. Automat. Contr. 50, 1936–1955 (2005) – 10.1109/tac.2005.860292
- Blankenstein, G., Ortega, R. & Van Der Schaft, A. J. The matching conditions of controlled Lagrangians and IDA-passivity based control. International Journal of Control 75, 645–665 (2002) – 10.1080/00207170210135939
- Ryalat, M. & Laila, D. S. A simplified IDA-PBC design for underactuated mechanical systems with applications. European Journal of Control 27, 1–16 (2016) – 10.1016/j.ejcon.2015.12.001
- Bloch, A. M., Leonard, N. E. & Marsden, J. E. Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem. IEEE Trans. Automat. Contr. 45, 2253–2270 (2000) – 10.1109/9.895562
- Zhang, M., Ortega, R., Liu, Z. & Su, H. A new family of interconnection and damping assignment passivity-based controllers. Int. J. Robust. Nonlinear Control 27, 50–65 (2016) – 10.1002/rnc.3557
- Nunna, K., Sassano, M. & Astolfi, A. Constructive Interconnection and Damping Assignment for Port-Controlled Hamiltonian Systems. IEEE Trans. Automat. Contr. 60, 2350–2361 (2015) – 10.1109/tac.2015.2400663
- Sarras, I., Acosta, J. Á., Ortega, R. & Mahindrakar, A. D. Constructive immersion and invariance stabilization for a class of underactuated mechanical systems. Automatica 49, 1442–1448 (2013) – 10.1016/j.automatica.2013.01.059
- Donaire, A. et al. Shaping the Energy of Mechanical Systems Without Solving Partial Differential Equations. IEEE Trans. Automat. Contr. 61, 1051–1056 (2016) – 10.1109/tac.2015.2458091
- Chang, D. E. The Method of Controlled Lagrangians: Energy plus Force Shaping. SIAM J. Control Optim. 48, 4821–4845 (2010) – 10.1137/070691310
- Woolsey, C. et al. Controlled Lagrangian Systems with Gyroscopic Forcing and Dissipation. European Journal of Control 10, 478–496 (2004) – 10.3166/ejc.10.478-496
- Delgado, S. & Kotyczka, P. Overcoming the Dissipation Condition in Passivity-based Control for a class of mechanical systems. IFAC Proceedings Volumes 47, 11189–11194 (2014) – 10.3182/20140824-6-za-1003.00499
- Gómez-Estern, F. & Van der Schaft, A. J. Physical Damping in IDA-PBC Controlled Underactuated Mechanical Systems. European Journal of Control 10, 451–468 (2004) – 10.3166/ejc.10.451-468
- Sandoval, J., Kelly, R. & Santibáñez, V. Interconnection and damping assignment passivity‐based control of a class of underactuated mechanical systems with dynamic friction. Intl J Robust & Nonlinear 21, 738–751 (2011) – 10.1002/rnc.1622
- Becherif, M. & Mendes, E. STABILITY AND ROBUSTNESS OF DISTURBED-PORT CONTROLLED HAMILTONIAN SYSTEMS WITH DISSIPATION. IFAC Proceedings Volumes 38, 574–579 (2005) – 10.3182/20050703-6-cz-1902.00751
- Romero, J. G., Donaire, A. & Ortega, R. Robust energy shaping control of mechanical systems. Systems & Control Letters 62, 770–780 (2013) – 10.1016/j.sysconle.2013.05.011
- Yalçın, Y., Gören‐Sümer, L. & Astolfi, A. Some results on disturbance attenuation for Hamiltonian systems via direct discrete‐time design. Intl J Robust & Nonlinear 25, 1927–1940 (2014) – 10.1002/rnc.3175
- Ryalat, M., Laila, D. S. & Torbati, M. M. Integral IDA-PBC and PID-like control for port-controlled Hamiltonian systems. 2015 American Control Conference (ACC) 5365–5370 (2015) doi:10.1109/acc.2015.7172178 – 10.1109/acc.2015.7172178
- Donaire, A., Romero, J. G., Ortega, R., Siciliano, B. & Crespo, M. Robust IDA-PBC for underactuated mechanical systems subject to matched disturbances. Int. J. Robust. Nonlinear Control 27, 1000–1016 (2016) – 10.1002/rnc.3615
- Ferguson, J., Donaire, A., Ortega, R. & Middleton, R. H. Robust integral action of port-Hamiltonian systems. IFAC-PapersOnLine 51, 181–186 (2018) – 10.1016/j.ifacol.2018.06.050
- Haddad NK, Robustness enhancement of IDA‐PBC controller in stabilising the inertia wheel inverted pendulum: theory and real‐time experiments. Int J Control (2017)
- Ferguson, J., Donaire, A. & Middleton, R. H. Integral Control of Port-Hamiltonian Systems: Nonpassive Outputs Without Coordinate Transformation. IEEE Trans. Automat. Contr. 62, 5947–5953 (2017) – 10.1109/tac.2017.2700995
- Ryalat, M. & Laila, D. S. A Robust IDA-PBC Approach for Handling Uncertainties in Underactuated Mechanical Systems. IEEE Trans. Automat. Contr. 63, 3495–3502 (2018) – 10.1109/tac.2018.2797191
- Franco, E. Adaptive IDA‐PBC for underactuated mechanical systems with constant disturbances. Adaptive Control & Signal 33, 1–15 (2018) – 10.1002/acs.2947
- Franco, E., Astolfi, A. & Rodriguez y Baena, F. Robust balancing control of flexible inverted-pendulum systems. Mechanism and Machine Theory 130, 539–551 (2018) – 10.1016/j.mechmachtheory.2018.09.001
- Martinez, R., Alvarez, J. & Orlov, Y. Hybrid Sliding-Mode-Based Control of Underactuated Systems With Dry Friction. IEEE Trans. Ind. Electron. 55, 3998–4003 (2008) – 10.1109/tie.2008.2004660
- Aguilar‐Ibañez, C., Sira‐Ramirez, H. & Acosta, J. Á. Stability of active disturbance rejection control for uncertain systems: A Lyapunov perspective. Intl J Robust & Nonlinear 27, 4541–4553 (2017) – 10.1002/rnc.3812
- Fu, B., Li, S., Yang, J. & Guo, L. Global output regulation for a class of single input Port-controlled Hamiltonian disturbed systems. Applied Mathematics and Computation 325, 322–331 (2018) – 10.1016/j.amc.2017.12.046
- Xie, W., Ma, B., Fernando, T. & Iu, H. H. A simple robust control for global asymptotic position stabilization of underactuated surface vessels. Intl J Robust & Nonlinear 27, 5028–5043 (2017) – 10.1002/rnc.3845
- Astolfi, A. & Ortega, R. Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems. IEEE Trans. Automat. Contr. 48, 590–606 (2003) – 10.1109/tac.2003.809820
- Karagiannis, D., Sassano, M. & Astolfi, A. Dynamic scaling and observer design with application to adaptive control. Automatica 45, 2883–2889 (2009) – 10.1016/j.automatica.2009.09.013
- Isidori, A. Nonlinear Control Systems. Communications and Control Engineering (Springer London, 1995). doi:10.1007/978-1-84628-615-5 – 10.1007/978-1-84628-615-5
- Franco, E. IDA-PBC with adaptive friction compensation for underactuated mechanical systems. International Journal of Control 94, 860–870 (2019) – 10.1080/00207179.2019.1622039
- Crasta, N., Ortega, R. & Pillai, H. K. On the matching equations of energy shaping controllers for mechanical systems. International Journal of Control 88, 1757–1765 (2015) – 10.1080/00207179.2015.1016453
- Viola, G., Ortega, R., Banavar, R., Acosta, J. A. & Astolfi, A. Total Energy Shaping Control of Mechanical Systems: Simplifying the Matching Equations Via Coordinate Changes. IEEE Trans. Automat. Contr. 52, 1093–1099 (2007) – 10.1109/tac.2007.899064