Authors

S. Fiaz, D. Zonetti, R. Ortega, J.M.A. Scherpen, A.J. van der Schaft

Abstract

In this paper starting with bond graph techniques a nonlinear mathematical model of the synchronous generator in port-Hamiltonian framework is derived. This leads to an energy–based description of the system which we later use for stability analysis. We use Park’s state transformation to decouple the dynamics of other state variables from the dynamics of rotor angle, resulting in a quotient system admitting equilibria. We show that the solutions of this quotient system are bounded and provide closed form expression for the ultimate bound of these solutions. We will also give some preliminary results on stability analysis of these equilibria using energy shaping techniques.

Keywords

Power system; Synchronous generator; Nonlinear models; Forced port-Hamiltonian systems; Lyapunov analysis.

Citation

  • Journal: IFAC Proceedings Volumes
  • Year: 2012
  • Volume: 45
  • Issue: 19
  • Pages: 30–35
  • Publisher: Elsevier BV
  • DOI: 10.3182/20120829-3-it-4022.00042
  • Note: 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control

BibTeX

@article{Fiaz_2012,
  title={{On port-Hamiltonian Modeling of the Synchronous Generator and Ultimate Boundedness of its solutions}},
  volume={45},
  ISSN={1474-6670},
  DOI={10.3182/20120829-3-it-4022.00042},
  number={19},
  journal={IFAC Proceedings Volumes},
  publisher={Elsevier BV},
  author={Fiaz, S. and Zonetti, D. and Ortega, R. and Scherpen, J.M.A. and van der Schaft, A.J.},
  year={2012},
  pages={30--35}
}

Download the bib file

References

  • Kundur, (1993)
  • (2009)
  • Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. Automat. Contr. 45, 1498–1502 (2000) – 10.1109/9.871758
  • van der Schaft, A. Characterization and partial synthesis of the behavior of resistive circuits at their terminals. Systems & Control Letters 59, 423–428 (2010) – 10.1016/j.sysconle.2010.05.005
  • Giusto, (2010)
  • Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
  • Fiaz, Port Hamiltonian modeling of Power Networks to appear. (2012)
  • Zonetti, (2011)
  • Khalil, (2002)