A Port-Hamiltonian Control Framework to Render a Power Electronic System Passive
Authors
Qing-Chang Zhong, Marcio Stefanello
Abstract
In this article, a control framework is proposed to render a power electronic system passive by adopting the port-Hamiltonian (pH) systems theory. The system has a power electronic converter, either grid-tied or islanded. The control framework consists of a lossless interconnection block and three control channels. It makes the power converter behave as a virtual synchronous machine (VSM). The three channels are designed to, respectively, generate the frequency and the flux of the VSM and a third quantity that is necessary for forming the lossless interconnection. It is proven that the closed-loop system is passive without the need of assuming constant frequency, constant voltage, and/or constant loads. It is sufficient to only assume that the load can be described as a passive pH model. Hence, the proposed control framework is very generic.
Citation
- Journal: IEEE Transactions on Automatic Control
- Year: 2022
- Volume: 67
- Issue: 4
- Pages: 1960–1965
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tac.2021.3069389
BibTeX
@article{Zhong_2022,
title={{A Port-Hamiltonian Control Framework to Render a Power Electronic System Passive}},
volume={67},
ISSN={2334-3303},
DOI={10.1109/tac.2021.3069389},
number={4},
journal={IEEE Transactions on Automatic Control},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Zhong, Qing-Chang and Stefanello, Marcio},
year={2022},
pages={1960--1965}
}
References
- Zhong, Q. Power Electronics‐Enabled Autonomous Power Systems. (2020) doi:10.1002/9781118803516 – 10.1002/9781118803516
- Zhong, Q. & Hornik, T. Control of Power Inverters in Renewable Energy and Smart Grid Integration. (2012) doi:10.1002/9781118481806 – 10.1002/9781118481806
- Carrasco, J. M. et al. Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey. IEEE Transactions on Industrial Electronics vol. 53 1002–1016 (2006) – 10.1109/tie.2006.878356
- Wen, B., Boroyevich, D., Burgos, R., Mattavelli, P. & Shen, Z. Small-Signal Stability Analysis of Three-Phase AC Systems in the Presence of Constant Power Loads Based on Measured d-q Frame Impedances. IEEE Transactions on Power Electronics vol. 30 5952–5963 (2015) – 10.1109/tpel.2014.2378731
- Zhong, Q.-C. Robust Droop Controller for Accurate Proportional Load Sharing Among Inverters Operated in Parallel. IEEE Transactions on Industrial Electronics vol. 60 1281–1290 (2013) – 10.1109/tie.2011.2146221
- Beck, H.-P. & Hesse, R. Virtual synchronous machine. 2007 9th International Conference on Electrical Power Quality and Utilisation (2007) doi:10.1109/epqu.2007.4424220 – 10.1109/epqu.2007.4424220
- Zhong, Q.-C. & Weiss, G. Static synchronous generators for distributed generation and renewable energy. 2009 IEEE/PES Power Systems Conference and Exposition 1–6 (2009) doi:10.1109/psce.2009.4840013 – 10.1109/psce.2009.4840013
- Qing-Chang Zhong, Phi-Long Nguyen, Zhenyu Ma & Wanxing Sheng. Self-Synchronized Synchronverters: Inverters Without a Dedicated Synchronization Unit. IEEE Transactions on Power Electronics vol. 29 617–630 (2014) – 10.1109/tpel.2013.2258684
- Zhong, Q.-C. Power-Electronics-Enabled Autonomous Power Systems: Architecture and Technical Routes. IEEE Transactions on Industrial Electronics vol. 64 5907–5918 (2017) – 10.1109/tie.2017.2677339
- Simpson-Porco, J. W., Dörfler, F. & Bullo, F. Synchronization and power sharing for droop-controlled inverters in islanded microgrids. Automatica vol. 49 2603–2611 (2013) – 10.1016/j.automatica.2013.05.018
- Seo, G.-S. et al. Dispatchable Virtual Oscillator Control for Decentralized Inverter-dominated Power Systems: Analysis and Experiments. 2019 IEEE Applied Power Electronics Conference and Exposition (APEC) (2019) doi:10.1109/apec.2019.8722028 – 10.1109/apec.2019.8722028
- Colombino, M., Groz, D., Brouillon, J.-S. & Dorfler, F. Global Phase and Magnitude Synchronization of Coupled Oscillators With Application to the Control of Grid-Forming Power Inverters. IEEE Transactions on Automatic Control vol. 64 4496–4511 (2019) – 10.1109/tac.2019.2898549
- Liu, S., Liu, P. X. & Wang, X. Stability Analysis of Grid-Interfacing Inverter Control in Distribution Systems With Multiple Photovoltaic-Based Distributed Generators. IEEE Transactions on Industrial Electronics vol. 63 7339–7348 (2016) – 10.1109/tie.2016.2592864
- Wu, H. et al. Small-Signal Modeling and Parameters Design for Virtual Synchronous Generators. IEEE Transactions on Industrial Electronics vol. 63 4292–4303 (2016) – 10.1109/tie.2016.2543181
- Pogaku, N., Prodanovic, M. & Green, T. C. Modeling, Analysis and Testing of Autonomous Operation of an Inverter-Based Microgrid. IEEE Transactions on Power Electronics vol. 22 613–625 (2007) – 10.1109/tpel.2006.890003
- Guo, X. et al. Dynamic Phasors-Based Modeling and Stability Analysis of Droop-Controlled Inverters for Microgrid Applications. IEEE Transactions on Smart Grid vol. 5 2980–2987 (2014) – 10.1109/tsg.2014.2331280
- Paquette, A. D. & Divan, D. M. Virtual Impedance Current Limiting for Inverters in Microgrids With Synchronous Generators. IEEE Transactions on Industry Applications vol. 51 1630–1638 (2015) – 10.1109/tia.2014.2345877
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Maschke. Proc. IFAC Symp. Nonlinear Control Syst. Des. (1991)
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Ortega, R. & Romero, J. G. Robust integral control of port-Hamiltonian systems: The case of non-passive outputs with unmatched disturbances. Systems & Control Letters vol. 61 11–17 (2012) – 10.1016/j.sysconle.2011.09.015
- Fiaz, S., Zonetti, D., Ortega, R., Scherpen, J. M. A. & van der Schaft, A. J. A port-Hamiltonian approach to power network modeling and analysis. European Journal of Control vol. 19 477–485 (2013) – 10.1016/j.ejcon.2013.09.002
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Schiffer, J., Ortega, R., Astolfi, A., Raisch, J. & Sezi, T. Conditions for stability of droop-controlled inverter-based microgrids. Automatica vol. 50 2457–2469 (2014) – 10.1016/j.automatica.2014.08.009
- Schiffer, J., Fridman, E., Ortega, R. & Raisch, J. Stability of a class of delayed port-Hamiltonian systems with application to microgrids with distributed rotational and electronic generation. Automatica vol. 74 71–79 (2016) – 10.1016/j.automatica.2016.07.022
- Arghir, C., Jouini, T. & Dörfler, F. Grid-forming control for power converters based on matching of synchronous machines. Automatica vol. 95 273–282 (2018) – 10.1016/j.automatica.2018.05.037
- van der Schaft, A. & Stegink, T. Perspectives in modeling for control of power networks. Annual Reviews in Control vol. 41 119–132 (2016) – 10.1016/j.arcontrol.2016.04.017
- Zhong, Q.-C. & Stefanello, M. Port-hamiltonian control of power electronic converters to achieve passivity. 2017 IEEE 56th Annual Conference on Decision and Control (CDC) 5092–5097 (2017) doi:10.1109/cdc.2017.8264413 – 10.1109/cdc.2017.8264413
- Konstantopoulos, G. C. & Alexandridis, A. T. Generalized Nonlinear Stabilizing Controllers for Hamiltonian-Passive Systems With Switching Devices. IEEE Transactions on Control Systems Technology vol. 21 1479–1488 (2013) – 10.1109/tcst.2012.2207724
- Gaviria, C., Fossas, E. & Grino, R. Robust controller for a full-bridge rectifier using the IDA approach and GSSA modeling. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 52 609–616 (2005) – 10.1109/tcsi.2004.842881
- Xia, M., Antsaklis, P. J., Gupta, V. & Zhu, F. Passivity and Dissipativity Analysis of a System and Its Approximation. IEEE Transactions on Automatic Control vol. 62 620–635 (2017) – 10.1109/tac.2016.2562919
- Zhu, F., Xia, M. & Antsaklis, P. J. On Passivity Analysis and Passivation of Event-Triggered Feedback Systems Using Passivity Indices. IEEE Transactions on Automatic Control vol. 62 1397–1402 (2017) – 10.1109/tac.2016.2570142
- Jeltsema, D. & Doria-Cerezo, A. Port-Hamiltonian Formulation of Systems With Memory. Proceedings of the IEEE vol. 100 1928–1937 (2012) – 10.1109/jproc.2011.2164169
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Transactions on Automatic Control vol. 45 1498–1502 (2000) – 10.1109/9.871758
- Lehman, B. & Bass, R. M. Extensions of averaging theory for power electronic systems. IEEE Transactions on Power Electronics vol. 11 542–553 (1996) – 10.1109/63.506119
- Zhong, Q.-C. Virtual Synchronous Machines: A unified interface for grid integration. IEEE Power Electronics Magazine vol. 3 18–27 (2016) – 10.1109/mpel.2016.2614906
- Zhong, Q.-C. The Ghost Operator and Its Applications to Reveal the Physical Meaning of Reactive Power for Electrical and Mechanical Systems and Others. IEEE Access vol. 5 13038–13045 (2017) – 10.1109/access.2017.2720161
- Zhong, Q.-C. & Zeng, Y. Universal Droop Control of Inverters With Different Types of Output Impedance. IEEE Access vol. 4 702–712 (2016) – 10.1109/access.2016.2526616
- Zhong, Q.-C., Ming, W.-L. & Zeng, Y. Self-Synchronized Universal Droop Controller. IEEE Access vol. 4 7145–7153 (2016) – 10.1109/access.2016.2616115