Authors

Franz Achleitner, Anton Arnold, Volker Mehrmann

Abstract

For the classes of finite‐dimensional linear time‐invariant semi‐dissipative Hamiltonian ordinary differential equations and differential‐algebraic equations with constant coefficients, stability and hypocoercivity are discussed and related to concepts from control theory. On the basis of staircase forms, the solution behavior is characterized and connected to the hypocoercivity index of these evolution equations. The results are applied to two infinite‐dimensional flow problems.

Citation

  • Journal: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
  • Year: 2023
  • Volume: 103
  • Issue: 7
  • Pages:
  • Publisher: Wiley
  • DOI: 10.1002/zamm.202100171

BibTeX

@article{Achleitner_2021,
  title={{Hypocoercivity and controllability in linear semi‐dissipative Hamiltonian ordinary differential equations and differential‐algebraic equations}},
  volume={103},
  ISSN={1521-4001},
  DOI={10.1002/zamm.202100171},
  number={7},
  journal={ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik},
  publisher={Wiley},
  author={Achleitner, Franz and Arnold, Anton and Mehrmann, Volker},
  year={2021}
}

Download the bib file

References

  • Achleitner, F., Arnold, A. & Carlen, E. A. On Linear Hypocoercive BGK Models. Springer Proceedings in Mathematics & Statistics 1–37 (2016) doi:10.1007/978-3-319-32144-8_1 – 10.1007/978-3-319-32144-8_1
  • Achleitner, F. et al. On multi-dimensional hypocoercive BGK models. Kinetic & Related Models vol. 11 953–1009 (2018) – 10.3934/krm.2018038
  • Achleitner, F., Arnold, A. & Signorello, B. On Optimal Decay Estimates for ODEs and PDEs with Modal Decomposition. Springer Proceedings in Mathematics & Statistics 241–264 (2019) doi:10.1007/978-3-030-15096-9_6 – 10.1007/978-3-030-15096-9_6
  • Achleitner F., Large‐time behavior in non‐symmetric Fokker–Planck equations. Riv. Math. Univ. Parma (N.S.) (2015)
  • Adrianova, L. Introduction to Linear Systems o Differential Equations. Translations of Mathematica Monographs (1995) doi:10.1090/mmono/146 – 10.1090/mmono/146
  • Arnold, A., Jin, S. & Wöhrer, T. Sharp decay estimates in local sensitivity analysis for evolution equations with uncertainties: From ODEs to linear kinetic equations. Journal of Differential Equations vol. 268 1156–1204 (2020) – 10.1016/j.jde.2019.08.047
  • Arnold, A. & Signorello, B. Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium. Kinetic and Related Models vol. 15 753 (2022) – 10.3934/krm.2022009
  • Bae H.‐O., Estimates of the wake for the 3D Oseen equations. Discrete Contin. Dyn. Syst. Ser. (2008)
  • Batty, C. J. K. & Vù, Q. P. Stability of individual elements under one-parameter semigroups. Transactions of the American Mathematical Society vol. 322 805–818 (1990) – 10.1090/s0002-9947-1990-1022866-5
  • Beattie, C. A., Mehrmann, V. & Van Dooren, P. Robust port-Hamiltonian representations of passive systems. Automatica vol. 100 182–186 (2019)10.1016/j.automatica.2018.11.013
  • Beattie C., Linear port‐Hamiltonian descriptor systems. Math. Control Signals Systems 30(4), Art. (2018)
  • Bernstein D.S., Scalar, Vector, and Matrix Mathematics (2018)
  • Blackford, L. S. et al. ScaLAPACK Users’ Guide. (1997) doi:10.1137/1.9780898719642 – 10.1137/1.9780898719642
  • Brouwer, J., Gasser, I. & Herty, M. Gas Pipeline Models Revisited: Model Hierarchies, Nonisothermal Models, and Simulations of Networks. Multiscale Modeling & Simulation vol. 9 601–623 (2011) – 10.1137/100813580
  • Byers, R., Geerts, T. & Mehrmann, V. Descriptor Systems Without Controllability at Infinity. SIAM Journal on Control and Optimization vol. 35 462–479 (1997) – 10.1137/s0363012994269818
  • Byers R., A structured staircase algorithm for skew‐symmetric/symmetric pencils. Electron. Trans. Numer. Anal. (2007)
  • Datta B.N., Numerical Methods for Linear Control Systems (2004)
  • Dieci, L., Russell, R. D. & Van Vleck, E. S. On the Compuation of Lyapunov Exponents for Continuous Dynamical Systems. SIAM Journal on Numerical Analysis vol. 34 402–423 (1997) – 10.1137/s0036142993247311
  • Dieci L., Collected lectures on the preservation of stability under discretization (2002)
  • Dolbeault, J., Mouhot, C. & Schmeiser, C. Hypocoercivity for kinetic equations with linear relaxation terms. Comptes Rendus. Mathématique vol. 347 511–516 (2009) – 10.1016/j.crma.2009.02.025
  • Dolbeault, J., Mouhot, C. & Schmeiser, C. Hypocoercivity for linear kinetic equations conserving mass. Transactions of the American Mathematical Society vol. 367 3807–3828 (2015) – 10.1090/s0002-9947-2015-06012-7
  • Du, N. H., Linh, V. H. & Mehrmann, V. Robust Stability of Differential-Algebraic Equations. Surveys in Differential-Algebraic Equations I 63–95 (2013) doi:10.1007/978-3-642-34928-7_2 – 10.1007/978-3-642-34928-7_2
  • Egger, H. & Kugler, T. Damped wave systems on networks: exponential stability and uniform approximations. Numerische Mathematik vol. 138 839–867 (2017) – 10.1007/s00211-017-0924-4
  • Egger, H., Kugler, T., Liljegren-Sailer, B., Marheineke, N. & Mehrmann, V. On Structure-Preserving Model Reduction for Damped Wave Propagation in Transport Networks. SIAM Journal on Scientific Computing vol. 40 A331–A365 (2018)10.1137/17m1125303
  • Emmrich, E. & Mehrmann, V. Operator Differential-Algebraic Equations Arising in Fluid Dynamics. Computational Methods in Applied Mathematics vol. 13 443–470 (2013) – 10.1515/cmam-2013-0018
  • Friedrichs, K. O. & Lax, P. D. Systems of Conservation Equations with a Convex Extension. Proceedings of the National Academy of Sciences vol. 68 1686–1688 (1971) – 10.1073/pnas.68.8.1686
  • Gadat, S. & Miclo, L. Spectral decompositions and $\mathbb{L}^2$-operator normof toy hypocoercive semi-groups. Kinetic & Related Models vol. 6 317–372 (2013) – 10.3934/krm.2013.6.317
  • Gantmacher F.R., The Theory of Matrices (1959)
  • Gräbner, N., Mehrmann, V., Quraishi, S., Schröder, C. & von Wagner, U. Numerical methods for parametric model reduction in the simulation of disk brake squeal. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik vol. 96 1388–1405 (2016) – 10.1002/zamm.201500217
  • Guillin A., Optimal linear drift for the speed of convergence of an hypoelliptic diffusion. Electron. Commun. Probab. 21, Paper No. (2016)
  • Guillin A., Erratum: Optimal linear drift for the speed of convergence of an hypoelliptic diffusion. Electron. Commun. Probab. 22, Paper No. (2017)
  • Hinrichsen D., Mathematical Systems Theory I (2010)
  • Horn R.A., Matrix Analysis (2013)
  • Johnson, C. R. & Smith, R. L. Closure Properties. Numerical Methods and Algorithms 111–136 doi:10.1007/0-387-24273-2_5 – 10.1007/0-387-24273-2_5
  • Johnson, C. R. & Smith, R. L. Closure of matrix classes under Schur complementation, including singularities. Contemporary Mathematics 185–200 (2006) doi:10.1090/conm/419/08004 – 10.1090/conm/419/08004
  • Kunkel, P. & Mehrmann, V. Differential-Algebraic Equations. EMS Textbooks in Mathematics (2006) doi:10.4171/017 – 10.4171/017
  • Levine W.S., The Control Systems Handbook: Control System Advanced Methods (2011)
  • Lewis, F. L. A survey of linear singular systems. Circuits, Systems, and Signal Processing vol. 5 3–36 (1986) – 10.1007/bf01600184
  • März, R. Criteria for the Trivial Solution of Differential Algebraic Equations with Small Nonlinearities to be Asymptotically Stable. Journal of Mathematical Analysis and Applications vol. 225 587–607 (1998) – 10.1006/jmaa.1998.6055
  • Mehl, C., Mehrmann, V. & Sharma, P. Stability Radii for Linear Hamiltonian Systems with Dissipation Under Structure-Preserving Perturbations. SIAM Journal on Matrix Analysis and Applications vol. 37 1625–1654 (2016)10.1137/16m1067330
  • Mehl, C., Mehrmann, V. & Wojtylak, M. Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems. SIAM Journal on Matrix Analysis and Applications vol. 39 1489–1519 (2018)10.1137/18m1164275
  • Mehl C., Distance problems for dissipative hamiltonian systems and related matrix polynomials. Linear Algebra Appl. (2020)
  • Ottaviani G., A geometric perspective on the singular value decomposition. Rend. Istit. Mat. Univ. Trieste (2015)
  • Reis, T., Rendel, O. & Voigt, M. The Kalman–Yakubovich–Popov inequality for differential-algebraic systems. Linear Algebra and its Applications vol. 485 153–193 (2015) – 10.1016/j.laa.2015.06.021
  • Sontag, E. D. Mathematical Control Theory. Texts in Applied Mathematics (Springer New York, 1998). doi:10.1007/978-1-4612-0577-7 – 10.1007/978-1-4612-0577-7
  • Ström, T. On Logarithmic Norms. SIAM Journal on Numerical Analysis vol. 12 741–753 (1975) – 10.1137/0712055
  • Stykel, T. Stability and inertia theorems for generalized Lyapunov equations. Linear Algebra and its Applications vol. 355 297–314 (2002) – 10.1016/s0024-3795(02)00354-3
  • Van Dooren, P. The computation of Kronecker’s canonical form of a singular pencil. Linear Algebra and its Applications vol. 27 103–140 (1979) – 10.1016/0024-3795(79)90035-1
  • Van Dooren, P. The generalized eigenstructure problem in linear system theory. IEEE Transactions on Automatic Control vol. 26 111–129 (1981) – 10.1109/tac.1981.1102559
  • Villani C., Hypocoercivity. Mem. Amer. Math. Soc. (2009)
  • Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493
  • Willems, J. C. Dissipative dynamical systems Part II: Linear systems with quadratic supply rates. Archive for Rational Mechanics and Analysis vol. 45 352–393 (1972) – 10.1007/bf00276494
  • Wonham, W. M. Linear Multivariable Control. (Springer New York, 1985). doi:10.1007/978-1-4612-1082-5 – 10.1007/978-1-4612-1082-5