Memristive port-Hamiltonian Systems
Authors
Dimitri Jeltsema, Arjan J. van der Schaft
Abstract
The port-Hamiltonian modelling framework is extended to a class of systems containing memristive elements and phenomena. First, the concept of memristance is generalised to the same generic level as the port-Hamiltonian framework. Second, the underlying Dirac structure is augmented with a memristive port. The inclusion of memristive elements in the port-Hamiltonian framework turns out to be almost as straightforward as the inclusion of resistive elements. Although a memristor is a resistive element, it is also a dynamic element since the associated Ohmian laws are rather expressed in terms of differential equations. This means that the state space manifold, as naturally defined by the storage elements, is augmented by the states associated with the memristive elements. Hence the order of complexity is, in general, defined by the number of storage elements plus the number of memristors in the system. Apart from enlarging our repertoire of modelling building blocks, the inclusion of memristive elements in the existing port-Hamiltonian formalism possibly opens up new ideas for controller synthesis and design.
Citation
- Journal: Mathematical and Computer Modelling of Dynamical Systems
- Year: 2010
- Volume: 16
- Issue: 2
- Pages: 75–93
- Publisher: Informa UK Limited
- DOI: 10.1080/13873951003690824
BibTeX
@article{Jeltsema_2010,
title={{Memristive port-Hamiltonian Systems}},
volume={16},
ISSN={1744-5051},
DOI={10.1080/13873951003690824},
number={2},
journal={Mathematical and Computer Modelling of Dynamical Systems},
publisher={Informa UK Limited},
author={Jeltsema, Dimitri and van der Schaft, Arjan J.},
year={2010},
pages={75--93}
}
References
- Chua, L. Memristor-The missing circuit element. IEEE Transactions on Circuit Theory vol. 18 507–519 (1971) – 10.1109/tct.1971.1083337
- Chua, L. O. Nonlinear circuit foundations for nanodevices, part I: the four-element torus. Proceedings of the IEEE vol. 9 1830–1859 (2003) – 10.1109/jproc.2003.818319
- Chua, L. O. & Sung Mo Kang. Memristive devices and systems. Proceedings of the IEEE vol. 64 209–223 (1976) – 10.1109/proc.1976.10092
- Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature vol. 453 80–83 (2008) – 10.1038/nature06932
- Oster, G. F. & Auslander, D. M. The Memristor: A New Bond Graph Element. Journal of Dynamic Systems, Measurement, and Control vol. 94 249–252 (1972) – 10.1115/1.3426595
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Bond-graph modeling. IEEE Control Systems vol. 27 24–45 (2007) – 10.1109/mcs.2007.338279
- Multidomain modeling of nonlinear networks and systems. IEEE Control Systems vol. 29 28–59 (2009) – 10.1109/mcs.2009.932927
- Breedveld, P. C. Thermodynamic Bond Graphs and the Problem of Thermal Inertance. Journal of the Franklin Institute vol. 314 15–40 (1982) – 10.1016/0016-0032(82)90050-3
- Van A.J., Schaft, -Gain and Passivity Techniques in Nonlinear Control (2000)
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Di Ventra M., arXiv:0901.3682 (2009)
- Milić, M. M. & Novak, L. A. The anti-Lagrangian equations: A missing network description. Journal of the Franklin Institute vol. 307 183–191 (1979) – 10.1016/0016-0032(79)90017-6
- Ying-Fai Lam. Formulation of normal form equations of nonlinear networks containing memristors and coupled elements. IEEE Transactions on Circuit Theory vol. 19 585–594 (1972) – 10.1109/tct.1972.1083551
- Loo, K. H., Stone, D. A., Tozer, R. C. & Devonshire, R. A Dynamic Conductance Model of Fluorescent Lamp for Electronic Ballast Design Simulation. IEEE Transactions on Power Electronics vol. 20 1178–1185 (2005) – 10.1109/tpel.2005.854057