Power-Preserving Interconnection of Single- and Two-Phase Flow Models for Managed Pressure Drilling
Authors
M.H. Abbasi, H. Bansal, H. Zwart, L. Iapichino, W.H.A. Schilders, N. van de Wouw
Abstract
Many complex systems are modeled by a network of different subsystems, each having their underlying mathematical model representations. Energy-based modeling of each of these subsystems can yield a port-Hamiltonian (pH) representation. In this paper, a single-phase flow model, a dissipative mathematical component and a two-phase flow model are interconnected to model hydraulics for Managed Pressure Drilling (MPD) applications. These subsystems are interconnected in a power-preserving manner to build an aggregated pH system for real-life MPD scenarios. We prove that the interconnection junction connecting the single- and two-phase flow models is conditionally power-preserving.
Citation
- Journal: 2020 American Control Conference (ACC)
- Year: 2020
- Volume:
- Issue:
- Pages: 3097–3102
- Publisher: IEEE
- DOI: 10.23919/acc45564.2020.9147405
BibTeX
@inproceedings{Abbasi_2020,
title={{Power-Preserving Interconnection of Single- and Two-Phase Flow Models for Managed Pressure Drilling}},
DOI={10.23919/acc45564.2020.9147405},
booktitle={{2020 American Control Conference (ACC)}},
publisher={IEEE},
author={Abbasi, M.H. and Bansal, H. and Zwart, H. and Iapichino, L. and Schilders, W.H.A. and van de Wouw, N.},
year={2020},
pages={3097--3102}
}
References
- macchelli, Boundary energyshaping control of an ideal compressible isentropic fluid in 1-d. IFACPapersOnLine (2017)
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Meyer, C., Rösch, A. & Tröltzsch, F. Optimal Control of PDEs with Regularized Pointwise State Constraints. Computational Optimization and Applications vol. 33 209–228 (2005) – 10.1007/s10589-005-3056-1
- Lordejani, S. N. et al. Modeling and Numerical Implementation of Managed-Pressure-Drilling Systems for the Assessment of Pressure-Control Systems. SPE Drilling & Completion vol. 35 598–619 (2020) – 10.2118/201108-pa
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- tiselj, Second order numerical method for two-fluid model of air-water flow (1995)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- de wilde, Port-Hamiltonian discretization of gas pipeline networks. MSc Thesis Applied Mathematics (2015)
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Evje, S. & Flåtten, T. On the Wave Structure of Two‐Phase Flow Models. SIAM Journal on Applied Mathematics vol. 67 487–511 (2007) – 10.1137/050633482
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Krstic, M. & Smyshlyaev, A. Boundary Control of PDEs. (2008) doi:10.1137/1.9780898718607 – 10.1137/1.9780898718607
- Figueiredo, A. B., Baptista, R. M., Freitas Rachid, F. B. de & Bodstein, G. C. R. Numerical simulation of stratified-pattern two-phase flow in gas pipelines using a two-fluid model. International Journal of Multiphase Flow vol. 88 30–49 (2017) – 10.1016/j.ijmultiphaseflow.2016.09.016
- bansal, Port-Hamiltonian formulation of two-phase flow models. (2020)
- aarsnes, Modeling of two-phase flow for estimation and control of drilling operations. PhD thesis (2016)
- LeVeque, R. J. Finite Volume Methods for Hyperbolic Problems. (2002) doi:10.1017/cbo9780511791253 – 10.1017/cbo9780511791253