Passivity-Based Distributed Event-Triggered Flocking Control of Port-Hamiltonian Systems
Authors
Ernesto Aranda-Escolástico, Mahmoud Abdelrahim, David Fernández-Amorós, María Guinaldo, Leonardo Colombo
Abstract
This letter addresses the problem of flocking motion in the context of port-Hamiltonian systems. The port-Hamiltonian framework offers advantages in modeling networks, dissipation, and heterogeneous agents. In this regard, designing flocking controllers in port-Hamiltonian form significantly increases their practical applications. Additionally, event-triggered control has proven effective in reducing bandwidth consumption. However, challenges remain in combining flocking requirements with energy-dissipating terms. Therefore, we propose a novel event-triggered flocking controller suitable for port-Hamiltonian systems. The method is validated through numerical simulations of a group of hexarotors.
Citation
- Journal: IEEE Control Systems Letters
- Year: 2025
- Volume: 9
- Issue:
- Pages: 342–347
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/lcsys.2025.3571859
BibTeX
@article{Aranda_Escol_stico_2025,
title={{Passivity-Based Distributed Event-Triggered Flocking Control of Port-Hamiltonian Systems}},
volume={9},
ISSN={2475-1456},
DOI={10.1109/lcsys.2025.3571859},
journal={IEEE Control Systems Letters},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Aranda-Escolástico, Ernesto and Abdelrahim, Mahmoud and Fernández-Amorós, David and Guinaldo, María and Colombo, Leonardo},
year={2025},
pages={342--347}
}
References
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Schiffer, J., Fridman, E. & Ortega, R. Stability of a class of delayed port-Hamiltonian systems with application to droop-controlled microgrids. 2015 54th IEEE Conference on Decision and Control (CDC) 6391–6396 (2015) doi:10.1109/cdc.2015.7403226 – 10.1109/cdc.2015.7403226
- Aoues, S., Cardoso-Ribeiro, F. L., Matignon, D. & Alazard, D. Modeling and Control of a Rotating Flexible Spacecraft: A Port-Hamiltonian Approach. IEEE Trans. Contr. Syst. Technol. 27, 355–362 (2019) – 10.1109/tcst.2017.2771244
- Jäschke, J., Ehrhardt, M., Günther, M. & Jacob, B. A Two-Dimensional port-Hamiltonian Model for Coupled Heat Transfer. Mathematics 10, 4635 (2022) – 10.3390/math10244635
- Jia, Z., Qiao, L. & Zhang, W. Adaptive tracking control of unmanned underwater vehicles with compensation for external perturbations and uncertainties using Port-Hamiltonian theory. Ocean Engineering 209, 107402 (2020) – 10.1016/j.oceaneng.2020.107402
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Dynamics on Graphs: Consensus and Coordination Control Algorithms. IFAC Proceedings Volumes 43, 175–178 (2010) – 10.3182/20100913-2-fr-4014.00012
- Feng, S., Kawano, Y., Cucuzzella, M. & Scherpen, J. M. A. Output consensus control for linear port-Hamiltonian systems. IFAC-PapersOnLine 55, 230–235 (2022) – 10.1016/j.ifacol.2022.11.057
- Macchelli, A. Trajectory Tracking for Discrete-Time Port-Hamiltonian Systems. IEEE Control Syst. Lett. 6, 3146–3151 (2022) – 10.1109/lcsys.2022.3182845
- Vos, E., Scherpen, J. M. A., Schaft, A. J. van der & Postma, A. Formation Control of Wheeled Robots in the Port-Hamiltonian Framework. IFAC Proceedings Volumes 47, 6662–6667 (2014) – 10.3182/20140824-6-za-1003.00394
- Reynolds, C. W. Flocks, herds and schools: A distributed behavioral model. Proceedings of the 14th annual conference on Computer graphics and interactive techniques 25–34 (1987) doi:10.1145/37401.37406 – 10.1145/37401.37406
- Beckers, T., Pappas, G. J. & Colombo, L. J. Learning Rigidity-based Flocking Control using Gaussian Processes with Probabilistic Stability Guarantees. 2022 IEEE 61st Conference on Decision and Control (CDC) 7254–7259 (2022) doi:10.1109/cdc51059.2022.9992465 – 10.1109/cdc51059.2022.9992465
- Ghapani, S., Mei, J., Ren, W. & Song, Y. Fully distributed flocking with a moving leader for Lagrange networks with parametric uncertainties. Automatica 67, 67–76 (2016) – 10.1016/j.automatica.2016.01.004
- Aranda-Escolastico, E., Colombo, L. J. & Guinaldo, M. Distributed Event-Triggered Flocking Control of Lagrangian Systems. IEEE Control Syst. Lett. 6, 1946–1951 (2022) – 10.1109/lcsys.2021.3136761
- Aranda-Escolástico, E., Guinaldo, M., Miśkowicz, M. & Dormido, S. Event-Based Control in Industry Practice: Paving the Way Toward Resource-Efficient Industrial Internet of Things. EEE Ind. Electron. Mag. 18, 38–47 (2024) – 10.1109/mie.2023.3286984
- Dimarogonas, D. V., Frazzoli, E. & Johansson, K. H. Distributed Event-Triggered Control for Multi-Agent Systems. IEEE Trans. Automat. Contr. 57, 1291–1297 (2012) – 10.1109/tac.2011.2174666
- Nowzari, C., Garcia, E. & Cortés, J. Event-triggered communication and control of networked systems for multi-agent consensus. Automatica 105, 1–27 (2019) – 10.1016/j.automatica.2019.03.009
- Aranda-Escolastico, E. et al. Event-Based Control: A Bibliometric Analysis of Twenty Years of Research. IEEE Access 8, 47188–47208 (2020) – 10.1109/access.2020.2978174
- Aranda-Escolástico, E., Colombo, L. J., Guinaldo, M. & Visioli, A. Event-Triggered Control of Port-Hamiltonian Systems Under Time-Delay Communication. IEEE Control Syst. Lett. 8, 175–180 (2024) – 10.1109/lcsys.2024.3355811
- Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 1996). doi:10.1007/3-540-76074-1 – 10.1007/3-540-76074-1
- Tabuada, P. Event-Triggered Real-Time Scheduling of Stabilizing Control Tasks. IEEE Trans. Automat. Contr. 52, 1680–1685 (2007) – 10.1109/tac.2007.904277
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Blankenstein, G., Ortega, R. & Van Der Schaft, A. J. The matching conditions of controlled Lagrangians and IDA-passivity based control. International Journal of Control 75, 645–665 (2002) – 10.1080/00207170210135939
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Rashad, R., Califano, F. & Stramigioli, S. Port-Hamiltonian Passivity-Based Control on SE(3) of a Fully Actuated UAV for Aerial Physical Interaction Near-Hovering. IEEE Robot. Autom. Lett. 4, 4378–4385 (2019) – 10.1109/lra.2019.2932864
- Du, G.-X., Quan, Q. & Cai, K.-Y. Controllability Analysis and Degraded Control for a Class of Hexacopters Subject to Rotor Failures. J Intell Robot Syst 78, 143–157 (2014) – 10.1007/s10846-014-0103-0