Adaptive tracking control of unmanned underwater vehicles with compensation for external perturbations and uncertainties using Port-Hamiltonian theory
Authors
Zehua Jia, Lei Qiao, Weidong Zhang
Abstract
This paper addresses the tracking control problem of unmanned underwater vehicles under the condition of external disturbances and unmodeled dynamics using Port-Hamiltonian theory. By introducing Port-Hamiltonian theory, conventional UUVs dynamics can be transformed into Port-Hamiltonian form with insightful expressions. Then, combined with a structure preserving adaptive method, unmodeled dynamics and unknown disturbances can be addressed simultaneously without destroying the interconnection structure of the Hamiltonian system. Finally, based on interconnection and damping assignment passivity-based control, the controller is designed in an intuitive way. The dissipation property of Port-Hamiltonian theory is utilized to prove the stability. Compared with other methods that come from the view of signal processing, the proposed scheme has the advantages of better potential and physical interpretation of engineering applications. Simulations and comparisons are conducted to demonstrate the effectiveness of the proposed method.
Keywords
Unmanned underwater vehicles; Adaptive control; Trajectory tracking control; Passivity-based control; Port-Hamiltonian theory
Citation
- Journal: Ocean Engineering
- Year: 2020
- Volume: 209
- Issue:
- Pages: 107402
- Publisher: Elsevier BV
- DOI: 10.1016/j.oceaneng.2020.107402
BibTeX
@article{Jia_2020,
title={{Adaptive tracking control of unmanned underwater vehicles with compensation for external perturbations and uncertainties using Port-Hamiltonian theory}},
volume={209},
ISSN={0029-8018},
DOI={10.1016/j.oceaneng.2020.107402},
journal={Ocean Engineering},
publisher={Elsevier BV},
author={Jia, Zehua and Qiao, Lei and Zhang, Weidong},
year={2020},
pages={107402}
}
References
- Astolfi, A., Chhabra, D. & Ortega, R. Asymptotic stabilization of some equilibria of an underactuated underwater vehicle. Systems & Control Letters vol. 45 193–206 (2002) – 10.1016/s0167-6911(01)00176-1
- Dirksz, Adaptive tracking control of fully actuated port-Hamiltonian mechanical systems. (2010)
- Dirksz, D. A. & Scherpen, J. M. A. Structure Preserving Adaptive Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 57 2880–2885 (2012) – 10.1109/tac.2012.2192359
- Do, Global tracking control of underactuated ships with nonzero off-diagonal terms in their system matrices. Automatica (2005)
- Donaire, A. & Perez, T. Port-Hamiltonian Theory of Motion Control for Marine Craft. IFAC Proceedings Volumes vol. 43 201–206 (2010) – 10.3182/20100915-3-de-3008.00054
- Donaire, A. & Perez, T. Dynamic positioning of marine craft using a port-Hamiltonian framework. Automatica vol. 48 851–856 (2012) – 10.1016/j.automatica.2012.02.022
- Donaire, A., Guadalupe Romero, J. & Perez, T. Passivity-based Trajectory-tracking for Marine Craft with Disturbance Rejection. IFAC-PapersOnLine vol. 48 19–24 (2015) – 10.1016/j.ifacol.2015.10.252
- Donaire, A., Romero, J. G. & Perez, T. Trajectory tracking passivity-based control for marine vehicles subject to disturbances. Journal of the Franklin Institute vol. 354 2167–2182 (2017) – 10.1016/j.jfranklin.2017.01.012
- Fossen, (2011)
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters vol. 42 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Gan, Trajectory tracking of unmanned underwater vehicles based on model predictive control in two dimension. (2016)
- Haddad, N. K., Chemori, A. & Belghith, S. Robustness enhancement of IDA-PBC controller in stabilising the inertia wheel inverted pendulum: theory and real-time experiments. International Journal of Control vol. 91 2657–2672 (2017) – 10.1080/00207179.2017.1331378
- Khalil, (2002)
- Li, J.-H., Lee, P.-M., Jun, B.-H. & Lim, Y.-K. Point-to-point navigation of underactuated ships. Automatica vol. 44 3201–3205 (2008) – 10.1016/j.automatica.2008.08.003
- Li, Y. et al. Study of 3 dimension trajectory tracking of underactuated autonomous underwater vehicle. Ocean Engineering vol. 105 270–274 (2015) – 10.1016/j.oceaneng.2015.06.034
- Nageshrao, S. P., Lopes, G. A. D., Jeltsema, D. & Babuska, R. Port-Hamiltonian Systems in Adaptive and Learning Control: A Survey. IEEE Transactions on Automatic Control vol. 61 1223–1238 (2016) – 10.1109/tac.2015.2458491
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Podder, T. K. & Sarkar, N. Fault-tolerant control of an autonomous underwater vehicle under thruster redundancy. Robotics and Autonomous Systems vol. 34 39–52 (2001) – 10.1016/s0921-8890(00)00100-7
- Qiao, L. & Zhang, W. Adaptive Second-Order Fast Nonsingular Terminal Sliding Mode Tracking Control for Fully Actuated Autonomous Underwater Vehicles. IEEE Journal of Oceanic Engineering vol. 44 363–385 (2019) – 10.1109/joe.2018.2809018
- Qiao, L. & Zhang, W. Double-Loop Integral Terminal Sliding Mode Tracking Control for UUVs With Adaptive Dynamic Compensation of Uncertainties and Disturbances. IEEE Journal of Oceanic Engineering vol. 44 29–53 (2019) – 10.1109/joe.2017.2777638
- Qureshi, A., El Ferik, S. & Lewis, F. L. ℒ2 neuro‐adaptive tracking control of uncertain port‐controlled Hamiltonian systems. IET Control Theory & Applications vol. 9 1781–1790 (2015) – 10.1049/iet-cta.2014.1144
- Rezazadegan, Design of an adaptive nonlinear controller for an autonomous underwater vehicle. Int. J. Adv. Electr. Electron. Eng. (2013)
- Rezazadegan, F., Shojaei, K., Sheikholeslam, F. & Chatraei, A. A novel approach to 6-DOF adaptive trajectory tracking control of an AUV in the presence of parameter uncertainties. Ocean Engineering vol. 107 246–258 (2015) – 10.1016/j.oceaneng.2015.07.040
- Smith, (2008)
- Van Der Schaft, Port-Hamiltonian systems: an introductory survey. (2006)
- van der Schaft, (2000)
- Yang, Experimental study of fault-tolerant system design for underwater robots. (1998)
- Yuh, J. Autonomous Robots vol. 8 7–24 (2000) – 10.1023/a:1008984701078