Optimal Control of Dual Arm Manipulation for Flapping-Wing Robots in the Post-Perching Phase
Authors
Sahar Sadeghi Kordkheili, Antonio Gonzalez-Morgado, Saeed Rafee Nekoo, Begoña C. Arrue, Anibal Ollero
Abstract
This work investigates cooperative dual-arm manipulation between two ornithopters in the post-perching phase. Flapping wing aerial systems are lightweight platforms designed to imitate bird flight, suitable for environmental monitoring tasks. When interacting with their environment, these systems must be able to perch on a branch as an initial step, followed by adjusting their position to achieve the desired pose and workspace. This research explores the application of a Port-Hamiltonian-based control method for designing and analysing controllers in cooperative manipulation by two ornithopters during the post-perching phase. The connection of end effectors while holding an object adds complexity and constraints to the problem. To address this, an energy-based approach using Optimal Port-Hamiltonian control and Optimal Load Distribution (OLD) is employed to evenly distribute the load between the arms. The effectiveness and advantages of this method are demonstrated through the defined scenario in which an optimal control law is implemented to derive an efficient trajectory for cooperative manipulation while tracking the desired elliptical path.
Citation
- Journal: 2025 International Conference on Unmanned Aircraft Systems (ICUAS)
- Year: 2025
- Volume:
- Issue:
- Pages: 155–161
- Publisher: IEEE
- DOI: 10.1109/icuas65942.2025.11007912
BibTeX
@inproceedings{Kordkheili_2025,
title={{Optimal Control of Dual Arm Manipulation for Flapping-Wing Robots in the Post-Perching Phase}},
DOI={10.1109/icuas65942.2025.11007912},
booktitle={{2025 International Conference on Unmanned Aircraft Systems (ICUAS)}},
publisher={IEEE},
author={Kordkheili, Sahar Sadeghi and Gonzalez-Morgado, Antonio and Nekoo, Saeed Rafee and Arrue, Begoña C. and Ollero, Anibal},
year={2025},
pages={155--161}
}References
- Ruiz, C., Acosta, J. Á. & Ollero, A. Aerodynamic reduced-order Volterra model of an ornithopter under high-amplitude flapping. Aerospace Science and Technology 121, 107331 (2022) – 10.1016/j.ast.2022.107331
- Nekoo, S. R. & Ollero, A. Closed-loop nonlinear optimal control design for flapping-wing flying robot (1.6 m wingspan) in indoor confined space: Prototyping, modeling, simulation, and experiment. ISA Transactions 142, 635–652 (2023) – 10.1016/j.isatra.2023.08.001
- Ollero, A., Tognon, M., Suarez, A., Lee, D. & Franchi, A. Past, Present, and Future of Aerial Robotic Manipulators. IEEE Trans. Robot. 38, 626–645 (2022) – 10.1109/tro.2021.3084395
- Ruggiero, F., Lippiello, V. & Ollero, A. Aerial Manipulation: A Literature Review. IEEE Robot. Autom. Lett. 3, 1957–1964 (2018) – 10.1109/lra.2018.2808541
- Suarez, A., Heredia, G. & Ollero, A. Design of an Anthropomorphic, Compliant, and Lightweight Dual Arm for Aerial Manipulation. IEEE Access 6, 29173–29189 (2018) – 10.1109/access.2018.2833160
- Suarez, A., Grau, P., Heredia, G. & Ollero, A. Winged Aerial Manipulation Robot with Dual Arm and Tail. Applied Sciences 10, 4783 (2020) – 10.3390/app10144783
- Jiao, C., Yu, L., Su, X., Wen, Y. & Dai, X. Adaptive hybrid impedance control for dual-arm cooperative manipulation with object uncertainties. Automatica 140, 110232 (2022) – 10.1016/j.automatica.2022.110232
- Pierri, F., Muscio, G. & Caccavale, F. An adaptive hierarchical control for aerial manipulators. Robotica 36, 1527–1550 (2018) – 10.1017/s0263574718000553
- Emami, S. A. & Banazadeh, A. Simultaneous trajectory tracking and aerial manipulation using a multi-stage model predictive control. Aerospace Science and Technology 112, 106573 (2021) – 10.1016/j.ast.2021.106573
- Laha, R. et al. Predictive Multi-Agent-Based Planning and Landing Controller for Reactive Dual-Arm Manipulation. IEEE Trans. Robot. 40, 864–885 (2024) – 10.1109/tro.2023.3341689
- Barzegar, A. & Lee, D.-J. Deep Reinforcement Learning-Based Adaptive Controller for Trajectory Tracking and Altitude Control of an Aerial Robot. Applied Sciences 12, 4764 (2022) – 10.3390/app12094764
- Sarhan, A. & Qin, S. Adaptive PID Control of UAV Altitude Dynamics Based on Parameter Optimization with Fuzzy Inference. IJMO 6, 246–251 (2016) – 10.7763/ijmo.2016.v6.534
- Sabo, C. & Cohen, K. Fuzzy Logic Unmanned Air Vehicle Motion Planning. Advances in Fuzzy Systems 2012, 1–14 (2012) – 10.1155/2012/989051
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes 25, 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- van der Schaft, A. Port-Hamiltonian systems: an introductory survey. Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006 1339–1365 (2007) doi:10.4171/022-3/65 – 10.4171/022-3/65
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Touron, M., Dieulot, J.-Y., Gomand, J. & Barre, P.-J. A port-Hamiltonian framework for operator force assisting systems: Application to the design of helicopter flight controls. Aerospace Science and Technology 72, 493–501 (2018) – 10.1016/j.ast.2017.11.035
- Fahmi, J.-M. W., Gresham, J. L. & Woolsey, C. A. Experimental Validation of Port-Hamiltonian-Based Control for Fixed-Wing Unmanned Aircraft. Journal of Guidance, Control, and Dynamics 46, 1169–1175 (2023) – 10.2514/1.g007018
- Yaghmaei, A. & Yazdanpanah, M. J. Trajectory tracking for a class of contractive port Hamiltonian systems. Automatica 83, 331–336 (2017) – 10.1016/j.automatica.2017.06.039
- Angerer, M., Music, S. & Hirche, S. Port-Hamiltonian based control for human-robot team interaction. 2017 IEEE International Conference on Robotics and Automation (ICRA) 2292–2299 (2017) doi:10.1109/icra.2017.7989264 – 10.1109/icra.2017.7989264
- Fahmi, J.-M. & Woolsey, C. A. Port-Hamiltonian Flight Control of a Fixed-Wing Aircraft. IEEE Trans. Contr. Syst. Technol. 30, 408–415 (2022) – 10.1109/tcst.2021.3059928
- Ficuciello, F., Carloni, R., Visser, L. C. & Stramigioli, S. Port-hamiltonian modeling for soft-finger manipulation. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems 4281–4286 (2010) doi:10.1109/iros.2010.5650866 – 10.1109/iros.2010.5650866
- Javanmardi, N., Yaghmaei, A. & Yazdanpanah, M. J. Spacecraft formation flying in the port-Hamiltonian framework. Nonlinear Dyn 99, 2765–2783 (2020) – 10.1007/s11071-019-05445-0
- Secchi, C., Stramigioli, S. & Fantuzzi, C. Transparency in port-Hamiltonian based telemanipulation. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems 1844–1849 (2005) doi:10.1109/iros.2005.1545405 – 10.1109/iros.2005.1545405
- Castaños, F. & Gromov, D. Passivity-based control of implicit port-Hamiltonian systems with holonomic constraints. Systems & Control Letters 94, 11–18 (2016) – 10.1016/j.sysconle.2016.04.004
- Donaire, A. & Perez, T. Dynamic positioning of marine craft using a port-Hamiltonian framework. Automatica 48, 851–856 (2012) – 10.1016/j.automatica.2012.02.022
- Acosta, J. A., Sanchez, M. I. & Ollero, A. Robust control of underactuated Aerial Manipulators via IDA-PBC. 53rd IEEE Conference on Decision and Control 673–678 (2014) doi:10.1109/cdc.2014.7039459 – 10.1109/cdc.2014.7039459
- Schilling, Fundamentals of robotics - analysis and control (1990)
- Korayem, M. H. & Nekoo, S. R. Controller design of cooperative manipulators using state-dependent Riccati equation. Robotica 36, 484–515 (2017) – 10.1017/s0263574717000522