Authors

J.A. Acosta, M.I. Sanchez, A. Ollero

Abstract

Aerial Manipulators (AMs) are a special class of underactuated mechanical systems formed by the join of Unmanned Aerial Vehicles (UAVs) and manipulators. A thorough analysis of the dynamics and a fully constructive controller design for a quadrotor plus n-link manipulator in a free-motion on an arbitrary plane is provided, via the lDA-PBC methodology. A controller is designed with the manipulator locked at any position ensuring global asymptotic stability in an open set and avoiding the AM goes upside down (autonomous). The major result of stability/robustness arises when it is proved that, additionally, the controller guarantees the boundedness of the trajectories for bounded movements of the manipulator, i.e. the robot manipulator executing planned tasks, giving rise to a non-autonomous port-controlled Hamiltonian system in closed loop. Moreover, all trajectories converge to a positive limit set, a strong result for matching-type controllers.

Citation

  • Journal: 53rd IEEE Conference on Decision and Control
  • Year: 2014
  • Volume:
  • Issue:
  • Pages: 673–678
  • Publisher: IEEE
  • DOI: 10.1109/cdc.2014.7039459

BibTeX

@inproceedings{Acosta_2014,
  title={{Robust control of underactuated Aerial Manipulators via IDA-PBC}},
  DOI={10.1109/cdc.2014.7039459},
  booktitle={{53rd IEEE Conference on Decision and Control}},
  publisher={IEEE},
  author={Acosta, J.A. and Sanchez, M.I. and Ollero, A.},
  year={2014},
  pages={673--678}
}

Download the bib file

References

  • Acosta, J. A., Ortega, R., Astolfi, A. & Mahindrakar, A. D. Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one. IEEE Trans. Automat. Contr. 50, 1936–1955 (2005) – 10.1109/tac.2005.860292
  • kelly, Control of Robot Manipulators in Joint Space (2005)
  • Strang, G. The Fundamental Theorem of Linear Algebra. The American Mathematical Monthly 100, 848–855 (1993) – 10.2307/2324660
  • ott, Cartesian Impedance Control of Redundant and Flexible-Joint Robots Springer Tracts in Advanced Robotics (2008)
  • Lippiello, V. & Ruggiero, F. Exploiting redundancy in Cartesian impedance control of UAVs equipped with a robotic arm. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (2012) doi:10.1109/iros.2012.6386021 – 10.1109/iros.2012.6386021
  • lippiello, Cartesian impedance control of a uav with a robotic arm. 10th IFAC Symposium on Robot Control International Federation of Automatic Control (2012)
  • Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
  • spong, Robot Dynamics and Control (1989)
  • slotine, Applied nonlinear control (1991)
  • Willems, J. C. Dissipative dynamical systems part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972) – 10.1007/bf00276493
  • Yamamoto, Y. & Xiaoping Yun. Coordinating locomotion and manipulation of a mobile manipulator. IEEE Trans. Automat. Contr. 39, 1326–1332 (1994) – 10.1109/9.293207
  • Viola, G., Ortega, R., Banavar, R., Acosta, J. A. & Astolfi, A. Total Energy Shaping Control of Mechanical Systems: Simplifying the Matching Equations Via Coordinate Changes. IEEE Trans. Automat. Contr. 52, 1093–1099 (2007) – 10.1109/tac.2007.899064
  • Korpela, C. M., Danko, T. W. & Oh, P. Y. MM-UAV: Mobile Manipulating Unmanned Aerial Vehicle. J Intell Robot Syst 65, 93–101 (2011) – 10.1007/s10846-011-9591-3
  • antonelli, Underwater robots Motion and force control of vehicle manipulator systems (2006)
  • Yoshida, K. & Wilcox, B. Space Robots and Systems. Springer Handbook of Robotics 1031–1063 (2008) doi:10.1007/978-3-540-30301-5_46 – 10.1007/978-3-540-30301-5_46
  • siciliano, Robotics Modelling Planning and Control (2009)
  • Cheviron, T., Chriette, A. & Plestan, F. Generic nonlinear model of reduced scale UAVs. 2009 IEEE International Conference on Robotics and Automation 3271–3276 (2009) doi:10.1109/robot.2009.5152514 – 10.1109/robot.2009.5152514
  • Nonami, K., Kendoul, F., Suzuki, S., Wang, W. & Nakazawa, D. Autonomous Flying Robots. (Springer Japan, 2010). doi:10.1007/978-4-431-53856-1 – 10.1007/978-4-431-53856-1
  • Stabilization of a mini rotorcraft with four rotors. IEEE Control Syst. 25, 45–55 (2005) – 10.1109/mcs.2005.1550152
  • madani, Sliding mode observer and backstepping control for a quadrotor unmanned aerial vehicles. American Control Conference (2007)
  • Lippiello, V., Loianno, G. & Siciliano, B. MAV indoor navigation based on a closed-form solution for absolute scale velocity estimation using Optical Flow and inertial data. IEEE Conference on Decision and Control and European Control Conference 3566–3571 (2011) doi:10.1109/cdc.2011.6160577 – 10.1109/cdc.2011.6160577
  • Chang, D. E., Bloch, A. M., Leonard, N. E., Marsden, J. E. & Woolsey, C. A. The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems. ESAIM: COCV 8, 393–422 (2002) – 10.1051/cocv:2002045
  • Albers, A. et al. Semi-autonomous flying robot for physical interaction with environment. 2010 IEEE Conference on Robotics, Automation and Mechatronics 441–446 (2010) doi:10.1109/ramech.2010.5513152 – 10.1109/ramech.2010.5513152
  • Blankenstein, G., Ortega, R. & Van Der Schaft, A. J. The matching conditions of controlled Lagrangians and IDA-passivity based control. International Journal of Control 75, 645–665 (2002) – 10.1080/00207170210135939
  • Maza, I., Caballero, F., Capitan, J., Martinez‐de‐Dios, J. R. & Ollero, A. A distributed architecture for a robotic platform with aerial sensor transportation and self‐deployment capabilities. Journal of Field Robotics 28, 303–328 (2011) – 10.1002/rob.20383
  • Pounds, P. E. I., Bersak, D. R. & Dollar, A. M. Grasping from the air: Hovering capture and load stability. 2011 IEEE International Conference on Robotics and Automation 2491–2498 (2011) doi:10.1109/icra.2011.5980314 – 10.1109/icra.2011.5980314
  • Fusato, D., Guglieri, G. & Celi, R. Flight Dynamics of an Articulated Rotor Helicopter with an External Slung Load. j am helicopter soc 46, 3–13 (2001) – 10.4050/jahs.46.3
  • Mellinger, D., Lindsey, Q., Shomin, M. & Kumar, V. Design, modeling, estimation and control for aerial grasping and manipulation. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (2011) doi:10.1109/iros.2011.6094871 – 10.1109/iros.2011.6094871
  • Maza, I., Kondak, K., Bernard, M. & Ollero, A. Multi-UAV Cooperation and Control for Load Transportation and Deployment. J Intell Robot Syst 57, 417–449 (2009) – 10.1007/s10846-009-9352-8
  • Ghadiok, V., Goldin, J. & Ren, W. Autonomous indoor aerial gripping using a quadrotor. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems 4645–4651 (2011) doi:10.1109/iros.2011.6094690 – 10.1109/iros.2011.6048786
  • Bernard, M., Kondak, K., Maza, I. & Ollero, A. Autonomous transportation and deployment with aerial robots for search and rescue missions. Journal of Field Robotics 28, 914–931 (2011) – 10.1002/rob.20401
  • michael, Cooperative manipulation and trasportation with aerial robots. Autonomous Robots Special Issue Robotics Science and Systems (2011)
  • Aerial Robotics Cooperative Assembly System. European Commission under the Seventh Framework Programme (FP7/2007–2013 ICT-2011–287617) (0)
  • Mahony, R., Stramigioli, S. & Trumpf, J. Vision based control of aerial robotic vehicles using the port Hamiltonian framework. IEEE Conference on Decision and Control and European Control Conference 3526–3532 (2011) doi:10.1109/cdc.2011.616055810.1109/cdc.2011.6160558
  • Pounds, P. E. I. & Dollar, A. M. UAV rotorcraft in compliant contact: Stability analysis and simulation. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems 2660–2667 (2011) doi:10.1109/iros.2011.6095086 – 10.1109/iros.2011.6095086
  • Mahony, R. & Hamel, T. Robust trajectory tracking for a scale model autonomous helicopter. Intl J Robust & Nonlinear 14, 1035–1059 (2004) – 10.1002/rnc.931
  • Bloch, A. M., Leonard, N. E. & Marsden, J. E. Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem. IEEE Trans. Automat. Contr. 45, 2253–2270 (2000) – 10.1109/9.895562
  • Auckly, D., Kapitanski, L. & White, W. Control of nonlinear underactuated systems. Comm. Pure Appl. Math. 53, 354–369 (2000) – 10.1002/(sici)1097-0312(200003)53:3<354::aid-cpa3>3.3.co;2-l
  • Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Automat. Contr. 47, 1218–1233 (2002) – 10.1109/tac.2002.800770
  • Bloch, A. M., Dong Eui Chang, Leonard, N. E. & Marsden, J. E. Controlled Lagrangians and the stabilization of mechanical systems. II. Potential shaping. IEEE Trans. Automat. Contr. 46, 1556–1571 (2001) – 10.1109/9.956051