Authors

F Ficuciello, R Carloni, L C Visser, S Stramigioli

Abstract

In this paper, we present a port-Hamiltonian model of a multi-fingered robotic hand, with soft-pads, while grasping and manipulating an object. The algebraic constraints of the interconnected systems are represented by a geometric object, called Dirac structure. This provides a powerful way to describe the non-contact to contact transition and contact viscoelasticity, by using the concepts of energy flows and power preserving interconnections. Using the port based model, an Intrinsically Passive Controller (IPC) is used to control the internal forces. Simulation results validate the model and demonstrate the effectiveness of the port-based approach.

Citation

  • Journal: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
  • Year: 2010
  • Volume:
  • Issue:
  • Pages: 4281–4286
  • Publisher: IEEE
  • DOI: 10.1109/iros.2010.5650866

BibTeX

@inproceedings{Ficuciello_2010,
  title={{Port-hamiltonian modeling for soft-finger manipulation}},
  DOI={10.1109/iros.2010.5650866},
  booktitle={{2010 IEEE/RSJ International Conference on Intelligent Robots and Systems}},
  publisher={IEEE},
  author={Ficuciello, F and Carloni, R and Visser, L C and Stramigioli, S},
  year={2010},
  pages={4281--4286}
}

Download the bib file

References

  • biagiotti, Modelling and controlling the compliance of a robotic hand with soft finger-pads. IEEE Int Conf on Robotics and Automation (2004)
  • stramigioli, Modeling the kinematics and dynamics of compliant contact. IEEE Int Conf on Robotics and Automation (2003)
  • Diolaiti, N., Melchiorri, C. & Stramigioli, S. Contact impedance estimation for robotic systems. IEEE Trans. Robot. 21, 925–935 (2005) – 10.1109/tro.2005.852261
  • Berselli, G. & Vassura, G. Differentiated layer design to modify the compliance of soft pads for robotic limbs. 2009 IEEE International Conference on Robotics and Automation 1285–1290 (2009) doi:10.1109/robot.2009.5152377 – 10.1109/robot.2009.5152377
  • Zefran, M. & Kumar, V. Affine connections for the Cartesian stiffness matrix. Proceedings of International Conference on Robotics and Automation vol. 2 1376–1381 – 10.1109/robot.1997.614329
  • Controllab Products B V 20-sim (2009)
  • Hogan, N. Impedance Control: An Approach to Manipulation: Part I—Theory. Journal of Dynamic Systems, Measurement, and Control 107, 1–7 (1985) – 10.1115/1.3140702
  • stramigioli, Modeling and IPC Control of Interactive Mechanical Systems A Coordinate-Free Approach (2001)
  • Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics 34, 225–233 (1994) – 10.1016/0034-4877(94)90038-8
  • Stramigioli, S. & Duindam, V. Variable spatial springs for robot control applications. Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180) vol. 4 1906–1911 – 10.1109/iros.2001.976352
  • Stramigioli, S. & Duindam, V. Port Based Modeling of Spatial Visco-Elastic Contacts. European Journal of Control 10, 505–514 (2004)10.3166/ejc.10.505-514
  • van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
  • breedveld, Physical systems theory in terms of bond graphs (1984)
  • murray, A Mathematical Introduction to Robot Manipulation (1994)
  • Springer Handbook of Robotics. (2008) doi:10.1007/978-3-540-30301-5 – 10.1007/978-3-540-30301-5