A port-Hamiltonian framework for operator force assisting systems: Application to the design of helicopter flight controls
Authors
Matthieu Touron, Jean-Yves Dieulot, Julien Gomand, Pierre-Jean Barre
Abstract
An energetic representation of helicopter flight controls, viewed as an Operator Assisting System, is proposed within the Port-Hamiltonian framework. The assisting controller modifies the dynamical behavior between the pilot stick and the swashplate, linked through a Continuous Variable Transmission, by enforcing force scaling and providing appropriate force feedback to the operator. Generic sufficient conditions are given on the assistance location and structure which allow the assisted system to be dissipative, hence providing nice stability and power scaling properties. Results are applied to the design of an assistance for a simplified flight control system. Simulations show the relevance of the method and are compared to real-life results.
Keywords
Port-Hamiltonian; Helicopter; Flight-axis control; Assisting system; Passivity
Citation
- Journal: Aerospace Science and Technology
- Year: 2018
- Volume: 72
- Issue:
- Pages: 493–501
- Publisher: Elsevier BV
- DOI: 10.1016/j.ast.2017.11.035
BibTeX
@article{Touron_2018,
title={{A port-Hamiltonian framework for operator force assisting systems: Application to the design of helicopter flight controls}},
volume={72},
ISSN={1270-9638},
DOI={10.1016/j.ast.2017.11.035},
journal={Aerospace Science and Technology},
publisher={Elsevier BV},
author={Touron, Matthieu and Dieulot, Jean-Yves and Gomand, Julien and Barre, Pierre-Jean},
year={2018},
pages={493--501}
}
References
- Bao, (2007)
- Byrnes, C. I., Isidori, A. & Willems, J. C. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Transactions on Automatic Control vol. 36 1228–1240 (1991) – 10.1109/9.100932
- Chikhaoui, Complementary use of BG and EMR formalisms for multiphysics systems analysis and control. (2012)
- Crasta, N., Ortega, R. & Pillai, H. K. On the matching equations of energy shaping controllers for mechanical systems. International Journal of Control vol. 88 1757–1765 (2015) – 10.1080/00207179.2015.1016453
- Dauphin-Tanguy, G., Rahmani, A. & Sueur, C. Bond graph aided design of controlled systems. Simulation Practice and Theory vol. 7 493–513 (1999) – 10.1016/s0928-4869(99)00009-9
- De Santis, A., Siciliano, B., De Luca, A. & Bicchi, A. An atlas of physical human–robot interaction. Mechanism and Machine Theory vol. 43 253–270 (2008) – 10.1016/j.mechmachtheory.2007.03.003
- Donaire, A. & Perez, T. Dynamic positioning of marine craft using a port-Hamiltonian framework. Automatica vol. 48 851–856 (2012) – 10.1016/j.automatica.2012.02.022
- Ferraguti, F. et al. An Energy Tank-Based Interactive Control Architecture for Autonomous and Teleoperated Robotic Surgery. IEEE Transactions on Robotics vol. 31 1073–1088 (2015) – 10.1109/tro.2015.2455791
- Friedman, C. & Rand, O. Robust trim procedure for rotorcraft configurations. Aerospace Science and Technology vol. 45 442–448 (2015) – 10.1016/j.ast.2015.06.007
- Hannaford, B. A design framework for teleoperators with kinesthetic feedback. IEEE Transactions on Robotics and Automation vol. 5 426–434 (1989) – 10.1109/70.88057
- Hogan, N. Impedance Control: An Approach to Manipulation: Part I—Theory. Journal of Dynamic Systems, Measurement, and Control vol. 107 1–7 (1985) – 10.1115/1.3140702
- Jazayeri, A. & Tavakoli, M. Bilateral teleoperation system stability with non-passive and strictly passive operator or environment. Control Engineering Practice vol. 40 45–60 (2015) – 10.1016/j.conengprac.2015.03.004
- Allred, C. J., Jolly, M. R. & Buckner, G. D. Real-time estimation of helicopter blade kinematics using integrated linear displacement sensors. Aerospace Science and Technology vol. 42 274–286 (2015) – 10.1016/j.ast.2014.11.012
- Kazerooni, H. Human-robot interaction via the transfer of power and information signals. IEEE Transactions on Systems, Man, and Cybernetics vol. 20 450–463 (1990) – 10.1109/21.52555
- Koopman, J., Jeltsema, D. & Verhaegen, M. Port-Hamiltonian description and analysis of the LuGre friction model. Simulation Modelling Practice and Theory vol. 19 959–968 (2011) – 10.1016/j.simpat.2010.11.008
- Lacevic, B. & Rocco, P. Closed-Form Solution to Controller Design for Human-Robot Interaction. Journal of Dynamic Systems, Measurement, and Control vol. 133 (2011) – 10.1115/1.4003260
- Lee, S., Ha, C. & Kim, B. S. Adaptive nonlinear control system design for helicopter robust command augmentation. Aerospace Science and Technology vol. 9 241–251 (2005) – 10.1016/j.ast.2004.12.007
- Li, P. Y. & Ngwompo, R. F. Power Scaling Bond Graph Approach to the Passification of Mechatronic Systems— with Application to Electrohydraulic Valves. Journal of Dynamic Systems, Measurement, and Control vol. 127 633–641 (2005) – 10.1115/1.2101848
- McKillip, R. M. & Perri, T. A. Helicopter Flight Control System Design and Evaluation Using Controller Inversion Techniques. Journal of the American Helicopter Society vol. 37 66–74 (1992) – 10.4050/jahs.37.66
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Raletz, (2010)
- Richter, H. A Framework for Control of Robots With Energy Regeneration. Journal of Dynamic Systems, Measurement, and Control vol. 137 (2015) – 10.1115/1.4030391
- Secchi, (2007)
- Secchi, C., Stramigioli, S. & Fantuzzi, C. Transparency in Port-Hamiltonian-Based Telemanipulation. IEEE Transactions on Robotics vol. 24 903–910 (2008) – 10.1109/tro.2008.924941
- Simplício, P., Pavel, M. D., van Kampen, E. & Chu, Q. P. An acceleration measurements-based approach for helicopter nonlinear flight control using Incremental Nonlinear Dynamic Inversion. Control Engineering Practice vol. 21 1065–1077 (2013) – 10.1016/j.conengprac.2013.03.009
- Tod, G., Pavel, M. D., Malburet, F., Gomand, J. & Barre, P.-J. Understanding pilot biodynamical feedthrough coupling in helicopter adverse roll axis instability via lateral cyclic feedback control. Aerospace Science and Technology vol. 59 18–31 (2016) – 10.1016/j.ast.2016.10.003
- Torenbeek, Helicopter flight mechanics. (2009)
- Wang, H. & Xie, Y. Task-Space Framework for Bilateral Teleoperation With Time Delays. Journal of Dynamic Systems, Measurement, and Control vol. 134 (2012) – 10.1115/1.4006215
- Worsnopp, T., Peshkin, M., Lynch, K. & Colgate, J. E. Controlling the Apparent Inertia of Passive Human-Interactive Robots. Journal of Dynamic Systems, Measurement, and Control vol. 128 44–52 (2005) – 10.1115/1.2168165
- Zhu, D., Zhou, D., Zhou, J. & Teo, K. L. Synchronization Control for a Class of Underactuated Mechanical Systems via Energy Shaping. Journal of Dynamic Systems, Measurement, and Control vol. 134 (2012) – 10.1115/1.4006073