Operator splitting based dynamic iteration for linear differential-algebraic port-Hamiltonian systems
Authors
Andreas Bartel, Michael Günther, Birgit Jacob, Timo Reis
Abstract
A dynamic iteration scheme for linear differential-algebraic port-Hamiltonian systems based on Lions–Mercier-type operator splitting methods is developed. The dynamic iteration is monotone in the sense that the error is decreasing and no stability conditions are required. The developed iteration scheme is even new for linear port-Hamiltonian systems governed by ODEs. The obtained algorithm is applied to a multibody system and an electrical network.
Keywords
37Jxx; 34A09
Citation
- Journal: Numerische Mathematik
- Year: 2023
- Volume: 155
- Issue: 1-2
- Pages: 1–34
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s00211-023-01369-5
BibTeX
@article{Bartel_2023,
title={{Operator splitting based dynamic iteration for linear differential-algebraic port-Hamiltonian systems}},
volume={155},
ISSN={0945-3245},
DOI={10.1007/s00211-023-01369-5},
number={1–2},
journal={Numerische Mathematik},
publisher={Springer Science and Business Media LLC},
author={Bartel, Andreas and Günther, Michael and Jacob, Birgit and Reis, Timo},
year={2023},
pages={1--34}
}
References
- Arnold, M. & Günther, M. Bit Numerical Mathematics vol. 41 1–25 (2001) – 10.1023/a:1021909032551
- Alì, G., Bartel, A., Günther, M., Romano, V. & Schöps, S. Simulation of Coupled PDAEs: Dynamic Iteration and Multirate Simulation. Mathematics in Industry 103–156 (2015) doi:10.1007/978-3-662-46672-8_3 – 10.1007/978-3-662-46672-8_3
- Bartel, A. & Günther, M. PDAEs in Refined Electrical Network Modeling. SIAM Review vol. 60 56–91 (2018) – 10.1137/17m1113643
- Bartel, A., Brunk, M. & Schöps, S. On the convergence rate of dynamic iteration for coupled problems with multiple subsystems. Journal of Computational and Applied Mathematics vol. 262 14–24 (2014) – 10.1016/j.cam.2013.07.031
- Bartel, A., Brunk, M., Günther, M. & Schöps, S. Dynamic Iteration for Coupled Problems of Electric Circuits and Distributed Devices. SIAM Journal on Scientific Computing vol. 35 B315–B335 (2013) – 10.1137/120867111
- Arnold, M. Modular time integration of coupled problems in system dynamics. Mathematics in Industry 57–72 (2022) doi:10.1007/978-3-030-96173-2_3 – 10.1007/978-3-030-96173-2_3
- Jackiewicz, Z. & Kwapisz, M. Convergence of Waveform Relaxation Methods for Differential-Algebraic Systems. SIAM Journal on Numerical Analysis vol. 33 2303–2317 (1996) – 10.1137/s0036142992233098
- MacNamara, S. & Strang, G. Operator Splitting. Scientific Computation 95–114 (2016) doi:10.1007/978-3-319-41589-5_3 – 10.1007/978-3-319-41589-5_3
- Diab, M. & Tischendorf, C. Splitting Methods for Linear Circuit DAEs of Index 1 in port-Hamiltonian Form. Mathematics in Industry 211–219 (2021) doi:10.1007/978-3-030-84238-3_21 – 10.1007/978-3-030-84238-3_21
- Diab, M., Tischendorf, C.: Splitting methods for linear coupled field-circuit DAEs. Submitted for publication (2022)
- Schaft, A. J. Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems. Advanced Dynamics and Control of Structures and Machines 127–167 (2004) doi:10.1007/978-3-7091-2774-2_9 – 10.1007/978-3-7091-2774-2_9
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. J. Port-Hamiltonian Differential-Algebraic Systems. Surveys in Differential-Algebraic Equations I 173–226 (2013) doi:10.1007/978-3-642-34928-7_5 – 10.1007/978-3-642-34928-7_5
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters vol. 121 31–37 (2018) – 10.1016/j.sysconle.2018.09.008
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Gernandt, H., Haller, F. E. & Reis, T. A Linear Relation Approach to Port-Hamiltonian Differential-Algebraic Equations. SIAM Journal on Matrix Analysis and Applications vol. 42 1011–1044 (2021) – 10.1137/20m1371166
- van der Schaft, A. & Maschke, B. Dirac and Lagrange Algebraic Constraints in Nonlinear Port-Hamiltonian Systems. Vietnam Journal of Mathematics vol. 48 929–939 (2020) – 10.1007/s10013-020-00419-x
- Lions, P. L. & Mercier, B. Splitting Algorithms for the Sum of Two Nonlinear Operators. SIAM Journal on Numerical Analysis vol. 16 964–979 (1979) – 10.1137/0716071
- Alt, H. W. Linear Functional Analysis. Universitext (Springer London, 2016). doi:10.1007/978-1-4471-7280-2 – 10.1007/978-1-4471-7280-2
- Kunkel, P. & Mehrmann, V. Differential-Algebraic Equations. EMS Textbooks in Mathematics (2006) doi:10.4171/017 – 10.4171/017
- Lamour, R., März, R. & Tischendorf, C. Differential-Algebraic Equations: A Projector Based Analysis. (Springer Berlin Heidelberg, 2013). doi:10.1007/978-3-642-27555-5 – 10.1007/978-3-642-27555-5
- Mehl, C., Mehrmann, V. & Wojtylak, M. Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems. SIAM Journal on Matrix Analysis and Applications vol. 39 1489–1519 (2018) – 10.1137/18m1164275
- Günther, M., Bartel, A., Jacob, B. & Reis, T. Dynamic iteration schemes and port‐Hamiltonian formulation in coupled differential‐algebraic equation circuit simulation. International Journal of Circuit Theory and Applications vol. 49 430–452 (2020) – 10.1002/cta.2870
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Burrage, K. Parallel and Sequential Methods for Ordinary Differential Equations. (1995) doi:10.1093/oso/9780198534327.001.0001 – 10.1093/oso/9780198534327.001.0001
- Barbu, V. Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics (Springer New York, 2010). doi:10.1007/978-1-4419-5542-5 – 10.1007/978-1-4419-5542-5
- Gugercin, S., Polyuga, R. V., Beattie, C. & van der Schaft, A. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica vol. 48 1963–1974 (2012) – 10.1016/j.automatica.2012.05.052