Splitting Methods for Linear Circuit DAEs of Index 1 in port-Hamiltonian Form
Authors
Abstract
Operator splitting is a powerful method for numerical investigation of complex models. This method was successfully used for ordinary and partial differential equations (ODEs and PDEs). In constrained dynamical problems as electric circuits or energy transport networks, differential-algebraic equations (DAEs) arise. The constraints prevent a simple transfer of operator splitting from ODEs to DAEs. Here, we present an approach for splitting linear circuit DAEs of index 1 based on a port-Hamiltonian modeling that we derive from loop and cutset equations by a topological decoupling. Finally, we present convergence results for the proposed DAE operator splitting.
Citation
- ISBN: 9783030842376
- Publisher: Springer International Publishing
- DOI: 10.1007/978-3-030-84238-3_21
BibTeX
@inbook{Diab_2021,
title={{Splitting Methods for Linear Circuit DAEs of Index 1 in port-Hamiltonian Form}},
ISBN={9783030842383},
ISSN={2198-3283},
DOI={10.1007/978-3-030-84238-3_21},
booktitle={{Scientific Computing in Electrical Engineering}},
publisher={Springer International Publishing},
author={Diab, Malak and Tischendorf, Caren},
year={2021},
pages={211--219}
}
References
- Bj&orhus, M. Operator splitting for abstract Cauchy problems. IMA Journal of Numerical Analysis vol. 18 419–443 (1998) – 10.1093/imanum/18.3.419
- Chronopoulos, A. T. s-Step Iterative Methods for (Non)Symmetric (In)Definite Linear Systems. SIAM Journal on Numerical Analysis vol. 28 1776–1789 (1991) – 10.1137/0728088
- LO Chua. L.O. Chua, C.A. Desoer, E.S. Kuh, Linear and Nonlinear Circuits (McGraw-Hill, Singapore, 1987) (1987)
- C.A. Desoer, E.S. Kuh, Basic Circuit Theory. International student edition (McGraw-Hill, New York, 1984)
- Est�vez Schwarz, D. & Tischendorf, C. Structural analysis of electric circuits and consequences for MNA. International Journal of Circuit Theory and Applications vol. 28 131–162 (2000) – 10.1002/(sici)1097-007x(200003/04)28:2<131::aid-cta100>3.0.co;2-w
- Günther, M., Bartel, A., Jacob, B. & Reis, T. Dynamic iteration schemes and port‐Hamiltonian formulation in coupled differential‐algebraic equation circuit simulation. International Journal of Circuit Theory and Applications vol. 49 430–452 (2020) – 10.1002/cta.2870
- Hairer, E., Wanner, G. & Lubich, C. Geometric Numerical Integration. Springer Series in Computational Mathematics (Springer Berlin Heidelberg, 2002). doi:10.1007/978-3-662-05018-7 – 10.1007/978-3-662-05018-7
- Hansen, E. & Ostermann, A. Dimension splitting for quasilinear parabolic equations. IMA Journal of Numerical Analysis vol. 30 857–869 (2009) – 10.1093/imanum/drn078
- Chung-Wen Ho, Ruehli, A. & Brennan, P. The modified nodal approach to network analysis. IEEE Transactions on Circuits and Systems vol. 22 504–509 (1975) – 10.1109/tcs.1975.1084079
- Hochbruck, M., Jahnke, T. & Schnaubelt, R. Convergence of an ADI splitting for Maxwell’s equations. Numerische Mathematik vol. 129 535–561 (2014) – 10.1007/s00211-014-0642-0
- Holden, H., Karlsen, K. H., Lie, K.-A. & Risebro, N. H. Splitting Methods for Partial Differential Equations with Rough Solutions. EMS Series of Lectures in Mathematics (2010) doi:10.4171/078 – 10.4171/078
- Hundsdorfer, W. & Verwer, J. G. A note on splitting errors for advection-reaction equations. Applied Numerical Mathematics vol. 18 191–199 (1995) – 10.1016/0168-9274(95)00069-7
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Riaza, R. Differential-Algebraic Systems. (2008) doi:10.1142/6746 – 10.1142/6746
- C. Tischendorf, R. Lamour, R. März, Differential-Algebraic Equations. A Projector Based Analysis (Springer, Hamburg, 2012)