On backstepping boundary control for a class of linear port-Hamiltonian systems
Authors
Hector Ramirez, Hans Zwart, Yann Le Gorrec, Alessandro Macchelli
Abstract
Backstepping boundary control is investigated for a class of linear port-Hamiltonian systems. It is shown that by considering as target system an exponentially stable dissipative PHS, i.e. a PHS with a linear dissipation term and homogeneous boundary conditions, a coordinate transformation based on a multiplicative operator suffices to map the open-loop system into the target system. The condition for the existence of the transformation is algebraic. Hence, the backstepping transformation and the associated matching condition are simpler than the conventional ones that considers Volterra integral terms and kernel conditions in the form of partial differential equations. Since the controller has been developed for a general class of linear PHS it is applicable to a large class of physical systems, as for instance transport, beam and wave equations. The result is illustrated on the examples of a transport equation and a vibrating string on a 1D spatial domain.
Citation
- Journal: 2017 IEEE 56th Annual Conference on Decision and Control (CDC)
- Year: 2017
- Volume:
- Issue:
- Pages: 658–663
- Publisher: IEEE
- DOI: 10.1109/cdc.2017.8263736
BibTeX
@inproceedings{Ramirez_2017,
title={{On backstepping boundary control for a class of linear port-Hamiltonian systems}},
DOI={10.1109/cdc.2017.8263736},
booktitle={{2017 IEEE 56th Annual Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Ramirez, Hector and Zwart, Hans and Le Gorrec, Yann and Macchelli, Alessandro},
year={2017},
pages={658--663}
}
References
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- le gorrec, A semigroup approach to port hamiltonian systems associated with linear skew symmetric operator. 16th International Symposium on Mathematical Theory of Networks and Systems (MTNS-2004) (2004)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- villegas, A Port-Hamiltonian Approach to Distributed Parameter Systems (2007)
- jacob, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces ser Operator Theory Advances and Applications (2012)
- Zwart, H., Le Gorrec, Y., Maschke, B. & Villegas, J. Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain. ESAIM: COCV 16, 1077–1093 (2009) – 10.1051/cocv/2009036
- Villegas, J. A., Zwart, H., Le Gorrec, Y., Maschke, B. & van der Schaft, A. J. Stability and Stabilization of a Class of Boundary Control Systems. Proceedings of the 44th IEEE Conference on Decision and Control 3850–3855 doi:10.1109/cdc.2005.1582762 – 10.1109/cdc.2005.1582762
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Trans. Automat. Contr. 54, 142–147 (2009) – 10.1109/tac.2008.2007176
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Trans. Automat. Contr. 59, 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Augner, B. & Jacob, B. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory 3, 207–229 (2014) – 10.3934/eect.2014.3.207
- krstic, Boundary control of PDEs a course on backstepping designs ser Advances in design and control (0)
- Smyshlyaev, A. & Krstic, M. Backstepping observers for a class of parabolic PDEs. Systems & Control Letters 54, 613–625 (2005) – 10.1016/j.sysconle.2004.11.001
- Smyshlyaev, A., Cerpa, E. & Krstic, M. Boundary Stabilization of a 1-D Wave Equation with In-Domain Antidamping. SIAM J. Control Optim. 48, 4014–4031 (2010) – 10.1137/080742646
- Meurer, T. & Kugi, A. Tracking control for boundary controlled parabolic PDEs with varying parameters: Combining backstepping and differential flatness. Automatica 45, 1182–1194 (2009) – 10.1016/j.automatica.2009.01.006
- Auriol, J. & Di Meglio, F. Minimum time control of heterodirectional linear coupled hyperbolic PDEs. Automatica 71, 300–307 (2016) – 10.1016/j.automatica.2016.05.030
- Wang, J.-M., Su, L.-L. & Li, H.-X. Stabilization of an unstable reaction–diffusion PDE cascaded with a heat equation. Systems & Control Letters 76, 8–18 (2015) – 10.1016/j.sysconle.2014.11.008
- Smyshlyaev, A. & Krstic, M. Closed-Form Boundary State Feedbacks for a Class of 1-D Partial Integro-Differential Equations. IEEE Trans. Automat. Contr. 49, 2185–2202 (2004) – 10.1109/tac.2004.838495
- Fattorini, H. O. Boundary Control Systems. SIAM Journal on Control 6, 349–385 (1968) – 10.1137/0306025
- Diagne, A., Diagne, M., Tang, S. & Krstic, M. Backstepping stabilization of the linearized Saint-Venant–Exner model. Automatica 76, 345–354 (2017) – 10.1016/j.automatica.2016.10.017
- Ramirez, H., Zwart, H. & Le Gorrec, Y. Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control. Automatica 85, 61–69 (2017) – 10.1016/j.automatica.2017.07.045
- Jacob, B., Morris, K. & Zwart, H. C 0-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain. J. Evol. Equ. 15, 493–502 (2015) – 10.1007/s00028-014-0271-1
- macchelli, On the synthesis of boundary control laws for distributed port Hamiltonian systems. IEEE Transactions on Automatic Control (2016)
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7