Observer Based Nonlinear Control of a Rotating Flexible Beam
Authors
Andrea Mattioni, Jesus Toledo, Yann Le Gorrec
Abstract
This paper presents an observer based nonlinear control for a flexible beam clamped on a rotating inertia. The considered model is composed by a set of Partial Differential Equations (PDEs) interconnected with an Ordinary Differential Equation (ODE), with control input in the ODE. The control problem consists in orienting the beam at the desired position, maintaining the flexible vibrations as low as possible. To this end, it is presented a nonlinear controller that depends on the beam’s state. An Observer is designed to reconstruct the infinite dimensional state, and the estimated state is used in the nonlinear controller instead of the real one. Assuming well-posedness of the closed loop system, it is shown the exponential convergence of the estimated state, and the asymptotic stability of the closed loop system. Numerical simulations are presented to characterize the closed loop behaviour with different choices of observer’s parameters.
Keywords
Distributed-parameter system; Nonlinear control; Observers; Asymptotic stability; port-Hamiltonian system
Citation
- Journal: IFAC-PapersOnLine
- Year: 2020
- Volume: 53
- Issue: 2
- Pages: 7479–7484
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2020.12.1306
- Note: 21st IFAC World Congress- Berlin, Germany, 11–17 July 2020
BibTeX
@article{Mattioni_2020,
title={{Observer Based Nonlinear Control of a Rotating Flexible Beam}},
volume={53},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2020.12.1306},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Mattioni, Andrea and Toledo, Jesus and Gorrec, Yann Le},
year={2020},
pages={7479--7484}
}
References
- Aoues, S., Cardoso-Ribeiro, F. L., Matignon, D. & Alazard, D. Modeling and Control of a Rotating Flexible Spacecraft: A Port-Hamiltonian Approach. IEEE Transactions on Control Systems Technology vol. 27 355–362 (2019) – 10.1109/tcst.2017.2771244
- Curtain, (1995)
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Jacob, (2012)
- Krabs, On the controllability of a slowly rotating timoshenko beam. Zeitschrift fr Analysis und ihre Anwendungen (1999)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Luo, Z.-H. & Feng, D.-X. Nonlinear torque control of a single-link flexible robot. Journal of Robotic Systems vol. 16 25–35 (1999) – 10.1002/(sici)1097-4563(199901)16:1<25::aid-rob3>3.0.co;2-4
- Luo, Z.-H., Guo, B.-Z. & Morgul, O. Stability and Stabilization of Infinite Dimensional Systems with Applications. Communications and Control Engineering (Springer London, 1999). doi:10.1007/978-1-4471-0419-3 – 10.1007/978-1-4471-0419-3
- Miletic, M., Sturzer, D., Arnold, A. & Kugi, A. Stability of an Euler-Bernoulli Beam With a Nonlinear Dynamic Feedback System. IEEE Transactions on Automatic Control vol. 61 2782–2795 (2016) – 10.1109/tac.2015.2499604
- Morgul, O. Orientation and stabilization of a flexible beam attached to a rigid body: planar motion. IEEE Transactions on Automatic Control vol. 36 953–962 (1991) – 10.1109/9.133188
- Oostveen, Strongly stabilizable distributed parameter systems.. (2000)
- Ramirez, H., Zwart, H. & Le Gorrec, Y. Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control. Automatica vol. 85 61–69 (2017) – 10.1016/j.automatica.2017.07.045
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Wang, M., Bestler, A. & Kotyczka, P. Modeling, discretization and motion control of a flexible beam in the port-Hamiltonian framework. IFAC-PapersOnLine vol. 50 6799–6806 (2017) – 10.1016/j.ifacol.2017.08.2511