Multi-Condition Energy Efficiency Optimization and Smooth-Switching Control of PMSM via Port-Hamiltonian System Principle
Authors
Bingchang Lv, Haisheng Yu, Xiangxiang Meng, Qing Yang, Qingkun Guo
Abstract
In practical engineering systems, permanent magnet synchronous motors (PMSMs) face challenges such as constrained electrical performance output, excessive energy losses, and discontinuous current transitions during condition switching when operating under multi-condition. To address the above problems, this paper proposes a smooth-switching control strategy that combines maximum torque per ampere (MTPA) and loss minimizing control (LMC). This strategy combines the respective advantages of the two control algorithms and can satisfy the demands of different working conditions. In addition, the proposed smooth-switching mechanism effectively eliminates the discontinuous current conversion problem during multi-condition switching, while mitigating the instability and vibration of the system. Then, the current controller is constructed by means of the port-Hamiltonian method. Meanwhile, energy shaping, damping injection and interconnection configuration approaches are introduced to achieve good steady-state performance of the system. Finally, the simulation results verify the effectiveness of the designed strategy.
Keywords
efficiency optimization, mtpa, pmsm, port-hamiltonian, smooth-switching
Citation
- ISBN: 9789819540525
- Publisher: Springer Nature Singapore
- DOI: 10.1007/978-981-95-4053-2_31
- Note: Chinese Intelligent Automation Conference
BibTeX
@inbook{Lv_2026,
title={{Multi-Condition Energy Efficiency Optimization and Smooth-Switching Control of PMSM via Port-Hamiltonian System Principle}},
ISBN={9789819540532},
ISSN={1876-1119},
DOI={10.1007/978-981-95-4053-2_31},
booktitle={{Proceedings of 2025 Chinese Intelligent Automation Conference}},
publisher={Springer Nature Singapore},
author={Lv, Bingchang and Yu, Haisheng and Meng, Xiangxiang and Yang, Qing and Guo, Qingkun},
year={2026},
pages={289--298}
}References
- Van M, Sun Y, Mcllvanna S, Nguyen M-N, Khyam MO, Ceglarek D (2023) Adaptive Fuzzy Fault Tolerant Control for Robot Manipulators With Fixed-Time Convergence. IEEE Trans Fuzzy Syst 31(9):3210–3219. https://doi.org/10.1109/tfuzz.2023.324769 – 10.1109/tfuzz.2023.3247693
- Hong D-K, Hwang W, Lee J-Y, Woo B-C (2018) Design, Analysis, and Experimental Validation of a Permanent Magnet Synchronous Motor for Articulated Robot Applications. IEEE Trans Magn 54(3):1–4. https://doi.org/10.1109/tmag.2017.275208 – 10.1109/tmag.2017.2752080
- Guo Q, Yu H, Yang Q, Gao X, Meng X (2024) Cooperative control of variable damping error port Hamiltonian and backstepping nonsingular terminal sliding mode control for manipulators driven by PMSMs. Intl J Robust & Nonlinear 34(14):9852–9872. https://doi.org/10.1002/rnc.749 – 10.1002/rnc.7496
- Meng X, Yu H, Zhang J (2023) An EPCH Control Strategy for Complex Nonlinear Systems with Actuator Saturation and Disturbances. Information Sciences 625:639–655. https://doi.org/10.1016/j.ins.2023.01.00 – 10.1016/j.ins.2023.01.005
- Meng X, Yu H, Zhang J, Yang Q, Fu C (2025) Adaptive Fault-Tolerant Cooperative Optimization Control for PMSM Servo System With Input Saturation and Multisource Disturbances. IEEE Trans Power Electron 40(5):6506–6518. https://doi.org/10.1109/tpel.2024.351604 – 10.1109/tpel.2024.3516047
- Han Z, Liu J, Yang W, Pinhal DB, Reiland N, Gerling D (2020) Improved Online Maximum-Torque-Per-Ampere Algorithm for Speed Controlled Interior Permanent Magnet Synchronous Machine. IEEE Trans Ind Electron 67(5):3398–3408. https://doi.org/10.1109/tie.2019.291847 – 10.1109/tie.2019.2918471
- H Yu, Proc. CSEE (2006)
- Gong Z, Ba X, Zhang C, Guo Y (2024) Enhanced Maximum Torque per Ampere Control With Predictable Core Loss for the Interior Permanent Magnet Synchronous Motor. IEEE Trans Appl Supercond 34(8):1–4. https://doi.org/10.1109/tasc.2024.346351 – 10.1109/tasc.2024.3463513
- Li K, Wang Y (2019) Maximum Torque Per Ampere (MTPA) Control for IPMSM Drives Based on a Variable-Equivalent-Parameter MTPA Control Law. IEEE Trans Power Electron 34(7):7092–7102. https://doi.org/10.1109/tpel.2018.287774 – 10.1109/tpel.2018.2877740
- Zhao Y, Yu H (2021) Cooperative control of deadbeat predictive and state error port‐controlled Hamiltonian method for permanent magnet synchronous motor drives. IET Electric Power Appl 15(10):1343–1357. https://doi.org/10.1049/elp2.1210 – 10.1049/elp2.12104
- Hang J, Wu H, Ding S, Huang Y, Hua W (2021) Improved Loss Minimization Control for IPMSM Using Equivalent Conversion Method. IEEE Trans Power Electron 36(2):1931–1940. https://doi.org/10.1109/tpel.2020.301201 – 10.1109/tpel.2020.3012018
- Liu Z, Mao K, Lei X, Zheng S, Zhang H (2024) Loss Minimization Control Based on Bivariate Extreme Value Theory for PMSMs. IEEE Trans Power Electron 39(2):2004–2012. https://doi.org/10.1109/tpel.2023.330723 – 10.1109/tpel.2023.3307237
- Chen S-G, Lin F-J, Huang M-S, Yeh S-P, Sun T-S (2023) Proximate Maximum Efficiency Control for Synchronous Reluctance Motor via AMRCT and MTPA Control. IEEE/ASME Trans Mechatron 28(3):1404–1414. https://doi.org/10.1109/tmech.2022.321818 – 10.1109/tmech.2022.3218185
- Ortega R, van der Schaft A, Maschke B, Escobar G (2002) Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38(4):585–596. https://doi.org/10.1016/s0005-1098(01)00278- – 10.1016/s0005-1098(01)00278-3