Authors

Qingkun Guo, Haisheng Yu, Qing Yang, Xunkai Gao, Xiangxiang Meng

Abstract

To improve the disadvantages of signal control and energy control, a cooperative control strategy combining signal control and energy control is proposed for manipulators driven by permanent magnet synchronous motors (PMSMs) in this article. The cooperative control strategy is achieved by way of the convex combination of signal controller and energy controller, and Gaussian function is selected as cooperative function. The energy controller applies variable damping error port Hamiltonian and the signal controller uses backstepping nonsingular terminal sliding mode control. The PMSM with loss model is applied to obtain higher efficiency. To deal with modeling errors and joint friction, a nonlinear disturbance observer is used for manipulators system. Simulation and experiment results display that the designed strategy not only increases efficiency, but also enhances dynamic and steady‐state performance of manipulators.

Citation

  • Journal: International Journal of Robust and Nonlinear Control
  • Year: 2024
  • Volume: 34
  • Issue: 14
  • Pages: 9852–9872
  • Publisher: Wiley
  • DOI: 10.1002/rnc.7496

BibTeX

@article{Guo_2024,
  title={{Cooperative control of variable damping error port Hamiltonian and backstepping nonsingular terminal sliding mode control for manipulators driven by PMSMs}},
  volume={34},
  ISSN={1099-1239},
  DOI={10.1002/rnc.7496},
  number={14},
  journal={International Journal of Robust and Nonlinear Control},
  publisher={Wiley},
  author={Guo, Qingkun and Yu, Haisheng and Yang, Qing and Gao, Xunkai and Meng, Xiangxiang},
  year={2024},
  pages={9852--9872}
}

Download the bib file

References

  • Long, T. et al. A Vibration Control Method for Hybrid-Structured Flexible Manipulator Based on Sliding Mode Control and Reinforcement Learning. IEEE Transactions on Neural Networks and Learning Systems vol. 32 841–852 (2021) – 10.1109/tnnls.2020.2979600
  • Azizi, S. et al. Performance enhancement of an uncertain nonlinear medical robot with optimal nonlinear robust controller. Computers in Biology and Medicine vol. 146 105567 (2022) – 10.1016/j.compbiomed.2022.105567
  • Corradini, F., Pettinari, S., Re, B., Rossi, L. & Tiezzi, F. A BPMN-driven framework for Multi-Robot System development. Robotics and Autonomous Systems vol. 160 104322 (2023) – 10.1016/j.robot.2022.104322
  • Bagheri, M., Naseradinmousavi, P. & Krstić, M. Feedback linearization based predictor for time delay control of a high-DOF robot manipulator. Automatica vol. 108 108485 (2019) – 10.1016/j.automatica.2019.06.037
  • Fung, R.-F., Kung, Y.-S. & Wu, G.-C. Dynamic analysis and system identification of an LCD glass-handling robot driven by a PMSM. Applied Mathematical Modelling vol. 34 1360–1381 (2010) – 10.1016/j.apm.2009.08.020
  • Öğülmüş, A. S. & Tınkır, M. Development and performance analysis of novel design 3-DOF non-integrated runner permanent magnet spherical motor. Engineering Science and Technology, an International Journal vol. 40 101380 (2023) – 10.1016/j.jestch.2023.101380
  • Zhang, Y., Shen, W. & Yang, H. An Improved Deadbeat Predictive Current Control of PMSM Drives Based on the Ultra-local Model. Chinese Journal of Electrical Engineering vol. 9 27–37 (2023) – 10.23919/cjee.2023.000020
  • Gil, J., You, S., Lee, Y. & Kim, W. Nonlinear sliding mode controller using disturbance observer for permanent magnet synchronous motors under disturbance. Expert Systems with Applications vol. 214 119085 (2023) – 10.1016/j.eswa.2022.119085
  • Li, C., Zhao, L. & Xu, Z. Finite-Time Adaptive Event-Triggered Control for Robot Manipulators With Output Constraints. IEEE Transactions on Circuits and Systems II: Express Briefs vol. 69 3824–3828 (2022) – 10.1109/tcsii.2022.3170084
  • Li, D., Chen, M., Peng, K. & Wu, L. Fixed‐time fault‐tolerant control of manipulator systems based on sliding mode observer. International Journal of Robust and Nonlinear Control vol. 34 440–455 (2023) – 10.1002/rnc.6980
  • Zhang, L., Liu, J. & Cui, N. Backstepping control for a two-link manipulator with appointed-time convergence. ISA Transactions vol. 128 208–219 (2022) – 10.1016/j.isatra.2021.10.005
  • Chaudhary, Km. S. & Kumar, N. Fractional order fast terminal sliding mode control scheme for tracking control of robot manipulators. ISA Transactions vol. 142 57–69 (2023) – 10.1016/j.isatra.2023.08.008
  • Zhai, J. & Li, Z. Fast-Exponential Sliding Mode Control of Robotic Manipulator With Super-Twisting Method. IEEE Transactions on Circuits and Systems II: Express Briefs vol. 69 489–493 (2022) – 10.1109/tcsii.2021.3081147
  • Petit, F., Daasch, A. & Albu-Schaffer, A. Backstepping Control of Variable Stiffness Robots. IEEE Transactions on Control Systems Technology vol. 23 2195–2202 (2015) – 10.1109/tcst.2015.2404894
  • Xu, Z. & Zhao, L. Adaptive backstepping asymptotic consensus tracking control of multiple uncertain manipulators with disturbances. International Journal of Robust and Nonlinear Control vol. 34 3602–3615 (2023) – 10.1002/rnc.7153
  • Du, P. et al. A novel adaptive backstepping sliding mode control for a lightweight autonomous underwater vehicle with input saturation. Ocean Engineering vol. 263 112362 (2022) – 10.1016/j.oceaneng.2022.112362
  • Wang, Y., Zhang, Z., Li, C. & Buss, M. Adaptive incremental sliding mode control for a robot manipulator. Mechatronics vol. 82 102717 (2022) – 10.1016/j.mechatronics.2021.102717
  • Zhai, J. & Xu, G. A Novel Non-Singular Terminal Sliding Mode Trajectory Tracking Control for Robotic Manipulators. IEEE Transactions on Circuits and Systems II: Express Briefs vol. 68 391–395 (2021) – 10.1109/tcsii.2020.2999937
  • Cruz-Ortiz, D., Chairez, I. & Poznyak, A. Non-singular terminal sliding-mode control for a manipulator robot using a barrier Lyapunov function. ISA Transactions vol. 121 268–283 (2022) – 10.1016/j.isatra.2021.04.001
  • Hu, J. et al. Finite-time adaptive super-twisting sliding mode control for autonomous robotic manipulators with actuator faults. ISA Transactions vol. 144 342–351 (2024) – 10.1016/j.isatra.2023.10.028
  • Pi, M. Adaptive Time-Delay Attitude Control of Jumping Robots Based on Voltage Control Model. IEEE Robotics and Automation Letters vol. 9 4503–4510 (2024) – 10.1109/lra.2024.3379850
  • Yang, P., Su, Y. & Zhang, L. Proximate fixed-time fault-tolerant tracking control for robot manipulators with prescribed performance. Automatica vol. 157 111262 (2023) – 10.1016/j.automatica.2023.111262
  • Xu, S. & He, B. Robust Adaptive Fuzzy Fault Tolerant Control of Robot Manipulators With Unknown Parameters. IEEE Transactions on Fuzzy Systems vol. 31 3081–3092 (2023) – 10.1109/tfuzz.2023.3244189
  • Meng, X., Yu, H. & Zhang, J. An EPCH Control Strategy for Complex Nonlinear Systems with Actuator Saturation and Disturbances. Information Sciences vol. 625 639–655 (2023) – 10.1016/j.ins.2023.01.005
  • Veil, C., Müller, D. & Sawodny, O. Nonlinear disturbance observers for robotic continuum manipulators. Mechatronics vol. 78 102518 (2021) – 10.1016/j.mechatronics.2021.102518
  • Ma, H., Xiong, S., Fu, Z., Tao, F. & Ji, B. High-order disturbance observer-based safe tracking control for a class of uncertain MIMO nonlinear systems with time-varying full state constraints. Applied Mathematics and Computation vol. 466 128430 (2024) – 10.1016/j.amc.2023.128430
  • Tiriolo, C., Franzè, G. & Lucia, W. A Receding Horizon Trajectory Tracking Strategy for Input-Constrained Differential-Drive Robots via Feedback Linearization. IEEE Transactions on Control Systems Technology vol. 31 1460–1467 (2023) – 10.1109/tcst.2022.3219298
  • San-Miguel, A., Puig, V. & Alenyà, G. Disturbance observer-based LPV feedback control of a N-DoF robotic manipulator including compliance through gain shifting. Control Engineering Practice vol. 115 104887 (2021) – 10.1016/j.conengprac.2021.104887
  • Zhu, C., Yang, C., Jiang, Y. & Zhang, H. Fixed-Time Fuzzy Control of Uncertain Robots With Guaranteed Transient Performance. IEEE Transactions on Fuzzy Systems vol. 31 1041–1051 (2023) – 10.1109/tfuzz.2022.3194373
  • Han, J., Shan, X., Liu, H., Xiao, J. & Huang, T. Fuzzy gain scheduling PID control of a hybrid robot based on dynamic characteristics. Mechanism and Machine Theory vol. 184 105283 (2023) – 10.1016/j.mechmachtheory.2023.105283
  • Yuan, W., Liu, Y.-H., Su, C.-Y. & Zhao, F. Whole-Body Control of an Autonomous Mobile Manipulator Using Model Predictive Control and Adaptive Fuzzy Technique. IEEE Transactions on Fuzzy Systems vol. 31 799–809 (2023) – 10.1109/tfuzz.2022.3189808
  • Jouila, A. & Nouri, K. An adaptive robust nonsingular fast terminal sliding mode controller based on wavelet neural network for a 2-DOF robotic arm. Journal of the Franklin Institute vol. 357 13259–13282 (2020) – 10.1016/j.jfranklin.2020.04.038
  • Wu, Y., Niu, W., Kong, L., Yu, X. & He, W. Fixed-time neural network control of a robotic manipulator with input deadzone. ISA Transactions vol. 135 449–461 (2023) – 10.1016/j.isatra.2022.09.030
  • Liu, Z. et al. Adaptive Neural Network-Based Fixed-Time Control for Trajectory Tracking of Robotic Systems. IEEE Transactions on Circuits and Systems II: Express Briefs vol. 70 241–245 (2023) – 10.1109/tcsii.2022.3194917
  • Zhang, S., Wu, Y., He, X. & Wang, J. Neural Network-Based Cooperative Trajectory Tracking Control for a Mobile Dual Flexible Manipulator. IEEE Transactions on Neural Networks and Learning Systems vol. 34 6545–6556 (2023) – 10.1109/tnnls.2021.3128404
  • DOI not foun – 10.1016/s0005‐1098(01)00278‐3
  • Ryalat, M. & Laila, D. S. A Robust IDA-PBC Approach for Handling Uncertainties in Underactuated Mechanical Systems. IEEE Transactions on Automatic Control vol. 63 3495–3502 (2018) – 10.1109/tac.2018.2797191
  • DOI not foun – 10.1007/s11071‐023‐08243‐x
  • Zhi, H., Wei, J., Liu, Y., Ding, S. & Owens, D. H. Constructive exponential tracking control for mechanical systems via Hamiltonian realization and contraction analysis method. ISA Transactions vol. 142 573–584 (2023)10.1016/j.isatra.2023.07.011
  • Harandi, M. R. J., Namvar, M. & Taghirad, H. D. Stabilization of Robots With Actuator Constraints via Interconnection and Damping Assignment. IEEE Transactions on Control Systems Technology vol. 31 2945–2952 (2023) – 10.1109/tcst.2023.3273902
  • Sandoval, J., Cervantes‐Pérez, L., Santibáñez, V., Moreno‐Valenzuela, J. & Kelly, R. A GES joint position trajectory tracking smooth controller of torque‐driven robot manipulators affected by disturbances. International Journal of Robust and Nonlinear Control vol. 34 1032–1053 (2023) – 10.1002/rnc.7015
  • Keymasi-Khalaji, A. & Haghjoo, M. Passivity-based stabilizing controller for an underwater robot. Ocean Engineering vol. 302 117656 (2024) – 10.1016/j.oceaneng.2024.117656
  • Yu, H., Yu, J., Liu, J. & Song, Q. Nonlinear control of induction motors based on state error PCH and energy-shaping principle. Nonlinear Dynamics vol. 72 49–59 (2012) – 10.1007/s11071-012-0689-3
  • Gao, X., Yu, H., Yang, Q., Meng, X. & Zhang, P. Neural network based dynamic surface integral nonsingular fast terminal sliding mode control for manipulators with disturbance rejection. Journal of the Franklin Institute vol. 360 11032–11054 (2023) – 10.1016/j.jfranklin.2023.08.001
  • Zhao, Y. & Yu, H. Cooperative control of deadbeat predictive and state error port‐controlled Hamiltonian method for permanent magnet synchronous motor drives. IET Electric Power Applications vol. 15 1343–1357 (2021) – 10.1049/elp2.12104
  • Huang, J., Han, Z., Cai, X. & Liu, L. Uniformly ultimately bounded tracking control of linear differential inclusions with stochastic disturbance. Mathematics and Computers in Simulation vol. 81 2662–2672 (2011) – 10.1016/j.matcom.2011.05.008