An EPCH Control Strategy for Complex Nonlinear Systems with Actuator Saturation and Disturbances
Authors
Xiangxiang Meng, Haisheng Yu, Jie Zhang
Abstract
This paper presents a novel error port-controlled Hamiltonian (EPCH) strategy with adaptive gains for a class of complex nonlinear systems subject to actuator saturation and disturbances. Considering the actuator saturation phenomenon in real complex systems, a new smooth saturation function with hyperbolic tangent is adopted to deal with the limitations between the actuator and the control signal. A nonlinear disturbance observer (NDOB) is utilized to compensate the influence of model parameter uncertain, noise, measurement error, external disturbance and other factors in real complex systems. To enhance the accuracy of position control and tracking control for the target, we propose a novel EPCH strategy, which adopts adaptive gain and variable damping technology in the damping injection link. Finally, the permanent magnet synchronous motor (PMSM) servo system is applied to verify the proposed method. The strategy proposed compared with port-controlled Hamiltonian based on disturbance observer, port-controlled Hamiltonian based on load torque estimator and other methods has better control performances by simulation results.
Keywords
actuator saturation, adaptive gain, epch, ndob, nonlinear systems, pmsm servo system
Citation
- Journal: Information Sciences
- Year: 2023
- Volume: 625
- Issue:
- Pages: 639–655
- Publisher: Elsevier BV
- DOI: 10.1016/j.ins.2023.01.005
BibTeX
@article{Meng_2023,
title={{An EPCH Control Strategy for Complex Nonlinear Systems with Actuator Saturation and Disturbances}},
volume={625},
ISSN={0020-0255},
DOI={10.1016/j.ins.2023.01.005},
journal={Information Sciences},
publisher={Elsevier BV},
author={Meng, Xiangxiang and Yu, Haisheng and Zhang, Jie},
year={2023},
pages={639--655}
}References
- Wen, C., Zhou, J., Liu, Z. & Su, H. Robust Adaptive Control of Uncertain Nonlinear Systems in the Presence of Input Saturation and External Disturbance. IEEE Trans. Automat. Contr. 56, 1672–1678 (2011) – 10.1109/tac.2011.2122730
- Zhu, Z., Xia, Y. & Fu, M. Adaptive Sliding Mode Control for Attitude Stabilization With Actuator Saturation. IEEE Trans. Ind. Electron. 58, 4898–4907 (2011) – 10.1109/tie.2011.2107719
- Li, Y., Tong, S. & Li, T. Adaptive fuzzy output-feedback control for output constrained nonlinear systems in the presence of input saturation. Fuzzy Sets and Systems 248, 138–155 (2014) – 10.1016/j.fss.2013.11.006
- Shen, T., Mei, S., Lu, Q., Hu, W. & Tamura, K. Adaptive nonlinear excitation control with L2 disturbance attenuation for power systems. Automatica 39, 81–89 (2003) – 10.1016/s0005-1098(02)00175-9
- Li, Y., Tong, S. & Li, T. Composite Adaptive Fuzzy Output Feedback Control Design for Uncertain Nonlinear Strict-Feedback Systems With Input Saturation. IEEE Trans. Cybern. 45, 2299–2308 (2015) – 10.1109/tcyb.2014.2370645
- Zhai, D.-H. & Xia, Y. Adaptive Control for Teleoperation System With Varying Time Delays and Input Saturation Constraints. IEEE Trans. Ind. Electron. 63, 6921–6929 (2016) – 10.1109/tie.2016.2583199
- Ma, J., Ge, S. S., Zheng, Z. & Hu, D. Adaptive NN Control of a Class of Nonlinear Systems With Asymmetric Saturation Actuators. IEEE Trans. Neural Netw. Learning Syst. 26, 1532–1538 (2015) – 10.1109/tnnls.2014.2344019
- Li, H., Wang, J. & Shi, P. Output-Feedback Based Sliding Mode Control for Fuzzy Systems With Actuator Saturation. IEEE Trans. Fuzzy Syst. 24, 1282–1293 (2016) – 10.1109/tfuzz.2015.2513085
- Yu, Z., Yang, Y., Li, S. & Sun, J. Observer-Based Adaptive Finite-Time Quantized Tracking Control of Nonstrict-Feedback Nonlinear Systems With Asymmetric Actuator Saturation. IEEE Trans. Syst. Man Cybern, Syst. 50, 4545–4556 (2020) – 10.1109/tsmc.2018.2854927
- Yan, L. et al. Active Disturbance-Rejection-Based Speed Control in Model Predictive Control for Induction Machines. IEEE Trans. Ind. Electron. 67, 2574–2584 (2020) – 10.1109/tie.2019.2912785
- Yang, J., Cui, H., Li, S. & Zolotas, A. Optimized Active Disturbance Rejection Control for DC-DC Buck Converters With Uncertainties Using a Reduced-Order GPI Observer. IEEE Trans. Circuits Syst. I 65, 832–841 (2018) – 10.1109/tcsi.2017.2725386
- Meng, Liquid level control of four-tank system based on active disturbance rejection technology. Measurement (2021)
- Chen, W.-H. Disturbance Observer Based Control for Nonlinear Systems. IEEE/ASME Trans. Mechatron. 9, 706–710 (2004) – 10.1109/tmech.2004.839034
- Chen, W.-H., Yang, J., Guo, L. & Li, S. Disturbance-Observer-Based Control and Related Methods—An Overview. IEEE Trans. Ind. Electron. 63, 1083–1095 (2016) – 10.1109/tie.2015.2478397
- Sariyildiz, E., Oboe, R. & Ohnishi, K. Disturbance Observer-Based Robust Control and Its Applications: 35th Anniversary Overview. IEEE Trans. Ind. Electron. 67, 2042–2053 (2020) – 10.1109/tie.2019.2903752
- Meng, X. et al. Disturbance Observer-Based Feedback Linearization Control for a Quadruple-Tank Liquid Level System. ISA Transactions 122, 146–162 (2022) – 10.1016/j.isatra.2021.04.021
- Plestan, F., Shtessel, Y., Brégeault, V. & Poznyak, A. Sliding mode control with gain adaptation—Application to an electropneumatic actuator. Control Engineering Practice 21, 679–688 (2013) – 10.1016/j.conengprac.2012.04.012
- Wang, M., Huang, L. & Yang, C. NN-Based Adaptive Tracking Control of Discrete-Time Nonlinear Systems With Actuator Saturation and Event-Triggering Protocol. IEEE Trans. Syst. Man Cybern, Syst. 51, 7613–7621 (2021) – 10.1109/tsmc.2020.2981954
- Mi, Y. et al. Frequency and Voltage Coordinated Control for Isolated Wind–Diesel Power System Based on Adaptive Sliding Mode and Disturbance Observer. IEEE Trans. Sustain. Energy 10, 2075–2083 (2019) – 10.1109/tste.2018.2878470
- Yan, Disturbance rejection for nonlinear uncertain systems with output measurement errors: Application to a helicopter model. IEEE Transactions on Industrial Informatics (2019)
- Yan, Y. et al. Robust Speed Regulation for PMSM Servo System With Multiple Sources of Disturbances via an Augmented Disturbance Observer. IEEE/ASME Trans. Mechatron. 23, 769–780 (2018) – 10.1109/tmech.2018.2799326
- Mohammadi Asl, R., Shabbouei Hagh, Y. & Palm, R. Robust control by adaptive Non-singular Terminal Sliding Mode. Engineering Applications of Artificial Intelligence 59, 205–217 (2017) – 10.1016/j.engappai.2017.01.005
- Zamfirache, I. A., Precup, R.-E., Roman, R.-C. & Petriu, E. M. Reinforcement Learning-based control using Q-learning and gravitational search algorithm with experimental validation on a nonlinear servo system. Information Sciences 583, 99–120 (2022) – 10.1016/j.ins.2021.10.070
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Yu, H., Yu, J., Liu, J. & Song, Q. Nonlinear control of induction motors based on state error PCH and energy-shaping principle. Nonlinear Dyn 72, 49–59 (2012) – 10.1007/s11071-012-0689-3
- Ferguson, J., Wu, D. & Ortega, R. On Matched Disturbance Suppression for Port-Hamiltonian Systems. IEEE Control Syst. Lett. 4, 892–897 (2020) – 10.1109/lcsys.2020.2994262
- Romero, J. G., Ortega, R. & Donaire, A. Energy Shaping of Mechanical Systems via PID Control and Extension to Constant Speed Tracking. IEEE Trans. Automat. Contr. 61, 3551–3556 (2016) – 10.1109/tac.2016.2521725
- Toledo, Observer-based boundary control of distributed port-hamiltonian systems. Automatica (2020)
- Yu, H., Yu, J., Wu, H. & Li, H. Energy-shaping and integral control of the three-tank liquid level system. Nonlinear Dyn 73, 2149–2156 (2013) – 10.1007/s11071-013-0930-8
- Meng, X., Yu, H., Zhang, J. & Yan, K. Optimized control strategy based on EPCH and DBMP algorithms for quadruple-tank liquid level system. Journal of Process Control 110, 121–132 (2022) – 10.1016/j.jprocont.2021.12.008
- Gil-Gonzalez, W. J., Garces, A., Fosso, O. B. & Escobar-Mejia, A. Passivity-Based Control of Power Systems Considering Hydro-Turbine With Surge Tank. IEEE Trans. Power Syst. 35, 2002–2011 (2020) – 10.1109/tpwrs.2019.2948360
- Borja, P., Ortega, R. & Scherpen, J. M. A. New Results on Stabilization of Port-Hamiltonian Systems via PID Passivity-Based Control. IEEE Trans. Automat. Contr. 66, 625–636 (2021) – 10.1109/tac.2020.2986731
- Moreschini, A., Mattioni, M., Monaco, S. & Normand-Cyrot, D. Stabilization of Discrete Port-Hamiltonian Dynamics via Interconnection and Damping Assignment. IEEE Control Syst. Lett. 5, 103–108 (2021) – 10.1109/lcsys.2020.3000705
- Zhang, C., Yang, J., Wen, C., Wang, L. & Li, S. Realization of Exact Tracking Control for Nonlinear Systems via a Nonrecursive Dynamic Design. IEEE Trans. Syst. Man Cybern, Syst. 50, 577–589 (2020) – 10.1109/tsmc.2017.2757966
- Han, H., Wu, X. & Qiao, J. Design of Robust Sliding Mode Control With Adaptive Reaching Law. IEEE Trans. Syst. Man Cybern, Syst. 50, 4415–4424 (2020) – 10.1109/tsmc.2018.2852626
- Yao, X., Park, J. H., Dong, H., Guo, L. & Lin, X. Robust Adaptive Nonsingular Terminal Sliding Mode Control for Automatic Train Operation. IEEE Trans. Syst. Man Cybern, Syst. 49, 2406–2415 (2019) – 10.1109/tsmc.2018.2817616
- Lian, S. et al. Adaptive Attitude Control of a Quadrotor Using Fast Nonsingular Terminal Sliding Mode. IEEE Trans. Ind. Electron. 69, 1597–1607 (2022) – 10.1109/tie.2021.3057015
- Van, M. & Ge, S. S. Adaptive Fuzzy Integral Sliding-Mode Control for Robust Fault-Tolerant Control of Robot Manipulators With Disturbance Observer. IEEE Trans. Fuzzy Syst. 29, 1284–1296 (2021) – 10.1109/tfuzz.2020.2973955
- Shihua Li & Zhigang Liu. Adaptive Speed Control for Permanent-Magnet Synchronous Motor System With Variations of Load Inertia. IEEE Trans. Ind. Electron. 56, 3050–3059 (2009) – 10.1109/tie.2009.2024655
- Yang, J., Chen, W.-H., Li, S., Guo, L. & Yan, Y. Disturbance/Uncertainty Estimation and Attenuation Techniques in PMSM Drives—A Survey. IEEE Trans. Ind. Electron. 64, 3273–3285 (2017) – 10.1109/tie.2016.2583412
- Dai, C., Guo, T., Yang, J. & Li, S. A Disturbance Observer-Based Current-Constrained Controller for Speed Regulation of PMSM Systems Subject to Unmatched Disturbances. IEEE Trans. Ind. Electron. 68, 767–775 (2021) – 10.1109/tie.2020.3005074
- Kong, Asymmetric bounded neural control for an uncertain robot by state feedback and output feedback. IEEE Transactions on Systems & Man, and Cybernetics: Systems (2021)
- Khalil, (2018)
- Han, J. From PID to Active Disturbance Rejection Control. IEEE Trans. Ind. Electron. 56, 900–906 (2009) – 10.1109/tie.2008.2011621
- Wang, W. & Tong, S. Adaptive Fuzzy Bounded Control for Consensus of Multiple Strict-Feedback Nonlinear Systems. IEEE Trans. Cybern. 48, 522–531 (2018) – 10.1109/tcyb.2016.2645763
- Xu, B., Zhang, L. & Ji, W. Improved Non-Singular Fast Terminal Sliding Mode Control With Disturbance Observer for PMSM Drives. IEEE Trans. Transp. Electrific. 7, 2753–2762 (2021) – 10.1109/tte.2021.3083925