Cooperative control of deadbeat predictive and state error port‐controlled Hamiltonian method for permanent magnet synchronous motor drives
Authors
Abstract
In this article, a cooperative control combining deadbeat predictive control (DBPC) and state error port‐controlled Hamiltonian (EPCH) method is presented for permanent magnet synchronous motor drives. This effective combination is achieved by a cooperation scheme based on the error function. First, the DBPC is introduced to provide a fast dynamic response, and the state EPCH method based on the loss model is constructed to get good steady‐state performance and high efficiency. After that, to combine the advantages of both controllers, the improved sigmoid function based on real‐time position error is designed as a cooperative scheme. Each control method can be utilised effectively within the corresponding range. Meanwhile, the switching process is continuous and smooth without unnecessary chattering. Thus, the proposed method not only solves the contradiction between dynamic and steady performance but also optimises energy consumption. Finally, the proposed method is verified experimentally. The results show that the motor control system based on the proposed method has fast dynamic transient response and good steady‐state performance with high efficiency.
Citation
- Journal: IET Electric Power Applications
- Year: 2021
- Volume: 15
- Issue: 10
- Pages: 1343–1357
- Publisher: Institution of Engineering and Technology (IET)
- DOI: 10.1049/elp2.12104
BibTeX
@article{Zhao_2021,
title={{Cooperative control of deadbeat predictive and state error port‐controlled Hamiltonian method for permanent magnet synchronous motor drives}},
volume={15},
ISSN={1751-8679},
DOI={10.1049/elp2.12104},
number={10},
journal={IET Electric Power Applications},
publisher={Institution of Engineering and Technology (IET)},
author={Zhao, Yujiao and Yu, Haisheng},
year={2021},
pages={1343--1357}
}
References
- Murshid, S. & Singh, B. Implementation of PMSM Drive for a Solar Water Pumping System. IEEE Trans. on Ind. Applicat. 55, 4956–4964 (2019) – 10.1109/tia.2019.2924401
- Sun, X., Yu, H., Yu, J. & Liu, X. Design and implementation of a novel adaptive backstepping control scheme for a PMSM with unknown load torque. IET Electric Power Appl 13, 445–455 (2019) – 10.1049/iet-epa.2018.5656
- Zhang, X., Zhang, L. & Zhang, Y. Model Predictive Current Control for PMSM Drives With Parameter Robustness Improvement. IEEE Trans. Power Electron. 34, 1645–1657 (2019) – 10.1109/tpel.2018.2835835
- Wang, F., Zuo, K., Tao, P. & Rodríguez, J. High Performance Model Predictive Control for PMSM by Using Stator Current Mathematical Model Self-Regulation Technique. IEEE Trans. Power Electron. 35, 13652–13662 (2020) – 10.1109/tpel.2020.2994948
- Dutta, L. & Kumar Das, D. Adaptive model predictive control design using multiple model second level adaptation for parameter estimation of two‐degree freedom of helicopter model. Intl J Robust & Nonlinear 31, 3248–3278 (2021) – 10.1002/rnc.5458
- Zhang, X. & Zhao, Z. Model Predictive Control for PMSM Drives With Variable Dead-Zone Time. IEEE Trans. Power Electron. 36, 10514–10525 (2021) – 10.1109/tpel.2021.3066636
- Zhou, Y. et al. Current Prediction Error Based Parameter Identification Method for SPMSM With Deadbeat Predictive Current Control. IEEE Trans. Energy Convers. 36, 1700–1710 (2021) – 10.1109/tec.2021.3051212
- Yuan, X., Zhang, S. & Zhang, C. Enhanced Robust Deadbeat Predictive Current Control for PMSM Drives. IEEE Access 7, 148218–148230 (2019) – 10.1109/access.2019.2946972
- Yao, Y., Huang, Y., Peng, F., Dong, J. & Zhang, H. An Improved Deadbeat Predictive Current Control With Online Parameter Identification for Surface-Mounted PMSMs. IEEE Trans. Ind. Electron. 67, 10145–10155 (2020) – 10.1109/tie.2019.2960755
- Turker, T., Buyukkeles, U. & Bakan, A. F. A Robust Predictive Current Controller for PMSM Drives. IEEE Trans. Ind. Electron. 63, 3906–3914 (2016) – 10.1109/tie.2016.2521338
- Xu, C., Han, Z. & Lu, S. Deadbeat Predictive Current Control for Permanent Magnet Synchronous Machines With Closed-Form Error Compensation. IEEE Trans. Power Electron. 35, 5018–5030 (2020) – 10.1109/tpel.2019.2943016
- Kang, S., Soh, J., Kim, R., Lee, K. & Kim, S. Robust predictive current control for IPMSM without rotor flux information based on a discrete‐time disturbance observer. IET Electric Power Appl 13, 2079–2089 (2019) – 10.1049/iet-epa.2019.0252
- Wang, F., Ke, D., Yu, X. & Huang, D. Enhanced Predictive Model Based Deadbeat Control for PMSM Drives Using Exponential Extended State Observer. IEEE Trans. Ind. Electron. 69, 2357–2369 (2022) – 10.1109/tie.2021.3065622
- Zhang, X., Hou, B. & Mei, Y. Deadbeat Predictive Current Control of Permanent-Magnet Synchronous Motors with Stator Current and Disturbance Observer. IEEE Trans. Power Electron. 32, 3818–3834 (2017) – 10.1109/tpel.2016.2592534
- Jiang, Y., Xu, W., Mu, C. & Liu, Y. Improved Deadbeat Predictive Current Control Combined Sliding Mode Strategy for PMSM Drive System. IEEE Trans. Veh. Technol. 67, 251–263 (2018) – 10.1109/tvt.2017.2752778
- Nguyen A.T., Observer‐based deadbeat predictive speed controller for surface‐mounted PM synchronous motor. ISA (Instrum. Soc. Am.) Trans. (2020)
- Yu, H., Yu, J., Liu, J. & Song, Q. Nonlinear control of induction motors based on state error PCH and energy-shaping principle. Nonlinear Dyn 72, 49–59 (2012) – 10.1007/s11071-012-0689-3
- Meshram, R. V. et al. Port-Controlled Phasor Hamiltonian Modeling and IDA-PBC Control of Solid-State Transformer. IEEE Trans. Contr. Syst. Technol. 27, 161–174 (2019) – 10.1109/tcst.2017.2761866
- Liu, X., Yu, H., Yu, J. & Zhao, Y. A Novel Speed Control Method Based on Port-Controlled Hamiltonian and Disturbance Observer for PMSM Drives. IEEE Access 7, 111115–111123 (2019) – 10.1109/access.2019.2934987
- Khazaee, A., Abootorabi Zarchi, H. & Arab Markadeh, G. Loss model based efficiency optimized control of brushless DC motor drive. ISA Transactions 86, 238–248 (2019) – 10.1016/j.isatra.2018.10.046
- Hang, J., Wu, H., Ding, S., Huang, Y. & Hua, W. Improved Loss Minimization Control for IPMSM Using Equivalent Conversion Method. IEEE Trans. Power Electron. 36, 1931–1940 (2021) – 10.1109/tpel.2020.3012018
- Abdelati, R. & Mimouni, M. F. Optimal control strategy of an induction motor for loss minimization using Pontryaguin principle. European Journal of Control 49, 94–106 (2019) – 10.1016/j.ejcon.2019.02.004
- Flieh, H. M., Lorenz, R. D., Totoki, E., Yamaguchi, S. & Nakamura, Y. Dynamic Loss Minimizing Control of a Permanent Magnet Servomotor Operating Even at the Voltage Limit When Using Deadbeat-Direct Torque and Flux Control. IEEE Trans. on Ind. Applicat. 55, 2710–2720 (2019) – 10.1109/tia.2018.2888801
- Feng, G., Lai, C. & Kar, N. C. An Analytical Solution to Optimal Stator Current Design for PMSM Torque Ripple Minimization With Minimal Machine Losses. IEEE Trans. Ind. Electron. 64, 7655–7665 (2017) – 10.1109/tie.2017.2694354
- Zhang, H., Dou, M. & Deng, J. Loss-Minimization Strategy of Nonsinusoidal Back EMF PMSM in Multiple Synchronous Reference Frames. IEEE Trans. Power Electron. 35, 8335–8346 (2020) – 10.1109/tpel.2019.2961689
- Wei, D., He, H. & Cao, J. Hybrid electric vehicle electric motors for optimum energy efficiency: A computationally efficient design. Energy 203, 117779 (2020) – 10.1016/j.energy.2020.117779
- Uddin, M. N., Rahman, Md. M., Patel, B. & Venkatesh, B. Performance of a Loss Model Based Nonlinear Controller for IPMSM Drive Incorporating Parameter Uncertainties. IEEE Trans. Power Electron. 34, 5684–5696 (2019) – 10.1109/tpel.2018.2871033
- Chen, S., Liu, D., Yang, Q., Zhou, J. & Chen, X. Cooperative control strategy for distributed wind-storage combined system based on consensus protocol. International Journal of Electrical Power & Energy Systems 127, 106681 (2021) – 10.1016/j.ijepes.2020.106681
- Sharf, M., Koch, A., Zelazo, D. & Allgower, F. Model-Free Practical Cooperative Control for Diffusively Coupled Systems. IEEE Trans. Automat. Contr. 67, 754–766 (2022) – 10.1109/tac.2021.3056582
- Wang, W., Lu, Z., Hua, W., Wang, Z. & Cheng, M. A Hybrid Dual-Mode Control for Permanent-Magnet Synchronous Motor Drives. IEEE Access 8, 105864–105873 (2020) – 10.1109/access.2020.3000238
- Alexandrou, A. D., Adamopoulos, N. & Kladas, A. Development of a Constant Switching Frequency Deadbeat Predictive Control Technique for Field-Oriented Synchronous Permanent-Magnet Motor Drive. IEEE Trans. Ind. Electron. 63, 5167–5175 (2016) – 10.1109/tie.2016.2559419
- Zhang, Y., Du, G., Li, J. & Lei, Y. Hybrid Control Strategy of MPC and DBC to Achieve a Fixed Frequency and Superior Robustness. Energies 13, 1176 (2020) – 10.3390/en13051176
- Xie, W. et al. Dynamic Loss Minimization of Finite Control Set-Model Predictive Torque Control for Electric Drive System. IEEE Trans. Power Electron. 31, 849–860 (2016) – 10.1109/tpel.2015.2410427
- Hamdy, M., Shalaby, R. & Sallam, M. A hybrid partial feedback linearization and deadbeat control scheme for a nonlinear gantry crane. Journal of the Franklin Institute 355, 6286–6299 (2018) – 10.1016/j.jfranklin.2018.06.014
- Hamdy, M., Shalaby, R. & Sallam, M. Experimental verification of a hybrid control scheme with chaotic whale optimization algorithm for nonlinear gantry crane: A comparative study. ISA Transactions 98, 418–433 (2020) – 10.1016/j.isatra.2019.08.060
- Shanthi, R., Kalyani, S. & Devie, P. M. Design and performance analysis of adaptive neuro-fuzzy controller for speed control of permanent magnet synchronous motor drive. Soft Comput 25, 1519–1533 (2020) – 10.1007/s00500-020-05236-5
- Navardi, M., Milimonfared, J. & Talebi, H. Flux and torque ripple minimisation for permanent magnet synchronous motor by finite‐set hybrid direct torque control. IET Power Electronics 13, 2547–2554 (2020) – 10.1049/iet-pel.2019.0038
- Uddin, M. N. & Rebeiro, R. S. Online Efficiency Optimization of a Fuzzy-Logic-Controller-Based IPMSM Drive. IEEE Trans. on Ind. Applicat. 47, 1043–1050 (2011) – 10.1109/tia.2010.2103293
- Wang, Y., Yu, H., Yu, J., Wu, H. & Liu, X. Trajectory Tracking of Flexible-Joint Robots Actuated by PMSM via a Novel Smooth Switching Control Strategy. Applied Sciences 9, 4382 (2019) – 10.3390/app9204382
- Aghili, F. Optimal Feedback Linearization Control of Interior PM Synchronous Motors Subject to Time-Varying Operation Conditions Minimizing Power Loss. IEEE Trans. Ind. Electron. 65, 5414–5421 (2018) – 10.1109/tie.2017.2784348
- Liu, A. & Yu, H. Smooth-Switching Control of Robot-Based Permanent-Magnet Synchronous Motors via Port-Controlled Hamiltonian and Feedback Linearization. Energies 13, 5731 (2020) – 10.3390/en13215731
- Balamurali, A., Kundu, A., Li, Z. & Kar, N. C. Improved Harmonic Iron Loss and Stator Current Vector Determination for Maximum Efficiency Control of PMSM in EV Applications. IEEE Trans. on Ind. Applicat. 57, 363–373 (2021) – 10.1109/tia.2020.3034888