Model Reduction for Linear Port-Hamiltonian Systems in the Loewner Framework
Authors
Alessio Moreschini, Joel D. Simard, Alessandro Astolfi
Abstract
The problem of model order reduction with assignment and preservation of port-Hamiltonian structure in the reduced order model is tackled in the Loewner framework. Given a set of right-tangential interpolation data, the (subset of) left-tangential interpolation data that allow for the construction of an interpolant possessing port-Hamiltonian structure is characterized. Conditions under which an interpolant retains the underlying port-Hamiltonian structure of the system generating the data are given by requiring a particular structure of the generalized observability matrix.
Keywords
Model reduction; Lagrangian and Hamiltonian systems; Networked systems; Realization theory; Energy systems
Citation
- Journal: IFAC-PapersOnLine
- Year: 2023
- Volume: 56
- Issue: 2
- Pages: 9493–9498
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2023.10.246
- Note: 22nd IFAC World Congress- Yokohama, Japan, July 9-14, 2023
BibTeX
@article{Moreschini_2023,
title={{Model Reduction for Linear Port-Hamiltonian Systems in the Loewner Framework}},
volume={56},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2023.10.246},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Moreschini, Alessio and Simard, Joel D. and Astolfi, Alessandro},
year={2023},
pages={9493--9498}
}
References
- Antoulas, (2005)
- ANTOULAS, A. C. & ANDERSON, B. D. Q. On the Scalar Rational Interpolation Problem. IMA Journal of Mathematical Control and Information vol. 3 61–88 (1986) – 10.1093/imamci/3.2-3.61
- Antoulas, A. C., Lefteriu, S. & Ionita, A. C. Chapter 8: A Tutorial Introduction to the Loewner Framework for Model Reduction. Model Reduction and Approximation 335–376 (2017) doi:10.1137/1.9781611974829.ch8 – 10.1137/1.9781611974829.ch8
- Astolfi, Model reduction by moment matching: Beyond linearity - a review of the last 10 years. (2020)
- Astolfi, A. Model Reduction by Moment Matching for Linear and Nonlinear Systems. IEEE Transactions on Automatic Control vol. 55 2321–2336 (2010) – 10.1109/tac.2010.2046044
- Chaturantabut, S., Beattie, C. & Gugercin, S. Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems. SIAM Journal on Scientific Computing vol. 38 B837–B865 (2016) – 10.1137/15m1055085
- Fujimoto, K. & Scherpen, J. M. A. Nonlinear input-normal realizations based on the differential eigenstructure of Hankel operators. IEEE Transactions on Automatic Control vol. 50 2–18 (2005) – 10.1109/tac.2004.840476
- Gallivan, K., Vandendorpe, A. & Van Dooren, P. Model Reduction of MIMO Systems via Tangential Interpolation. SIAM Journal on Matrix Analysis and Applications vol. 26 328–349 (2004) – 10.1137/s0895479803423925
- GLOVER, K. All optimal Hankel-norm approximations of linear multivariable systems and theirL,∞-error bounds†. International Journal of Control vol. 39 1115–1193 (1984) – 10.1080/00207178408933239
- Gosea, I. V., Petreczky, M. & Antoulas, A. C. Data-Driven Model Order Reduction of Linear Switched Systems in the Loewner Framework. SIAM Journal on Scientific Computing vol. 40 B572–B610 (2018) – 10.1137/17m1120233
- Gugercin, S. & Antoulas, A. C. A Survey of Model Reduction by Balanced Truncation and Some New Results. International Journal of Control vol. 77 748–766 (2004) – 10.1080/00207170410001713448
- Gugercin, S., Polyuga, R. V., Beattie, C. & van der Schaft, A. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica vol. 48 1963–1974 (2012) – 10.1016/j.automatica.2012.05.052
- Ionescu, T. C. & Astolfi, A. Families of moment matching based, structure preserving approximations for linear port Hamiltonian systems. Automatica vol. 49 2424–2434 (2013) – 10.1016/j.automatica.2013.05.006
- Mayo, A. J. & Antoulas, A. C. A framework for the solution of the generalized realization problem. Linear Algebra and its Applications vol. 425 634–662 (2007) – 10.1016/j.laa.2007.03.008
- Moreschini, Discrete port-controlled Hamiltonian dynamics and average passivation. (2019)
- Moreschini, A., Mattioni, M., Monaco, S. & Normand-Cyrot, D. Stabilization of Discrete Port-Hamiltonian Dynamics via Interconnection and Damping Assignment. IEEE Control Systems Letters vol. 5 103–108 (2021) – 10.1109/lcsys.2020.3000705
- Nunna, K., Sassano, M. & Astolfi, A. Constructive Interconnection and Damping Assignment for Port-Controlled Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 60 2350–2361 (2015) – 10.1109/tac.2015.2400663
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica vol. 46 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- Safonov, M. G., Chiang, R. Y. & Limebeer, D. J. N. Optimal Hankel model reduction for nonminimal systems. IEEE Transactions on Automatic Control vol. 35 496–502 (1990) – 10.1109/9.52314
- Scarciotti, G. & Astolfi, A. Nonlinear Model Reduction by Moment Matching. Foundations and Trends® in Systems and Control vol. 4 224–409 (2017) – 10.1561/2600000012
- Scherpen, J. M. A. Balancing for nonlinear systems. Systems & Control Letters vol. 21 143–153 (1993) – 10.1016/0167-6911(93)90117-o
- Scherpen, J. M. A. H∞ balancing for nonlinear systems. International Journal of Robust and Nonlinear Control vol. 6 645–668 (1996) – 10.1002/(sici)1099-1239(199608)6:7<645::aid-rnc179>3.0.co;2-x
- Simard, An interconnection-based interpretation of the Loewner matrices. (2019)
- Simard, J. D. & Astolfi, A. Loewner Functions for Linear Time-Varying Systems with Applications to Model Reduction. IFAC-PapersOnLine vol. 53 5623–5628 (2020) – 10.1016/j.ifacol.2020.12.1578
- Simard, J. D. & Astolfi, A. Nonlinear Model Reduction in the Loewner Framework. IEEE Transactions on Automatic Control vol. 66 5711–5726 (2021) – 10.1109/tac.2021.3110809
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- Yakubovich, S-procedure in nonlinear control theory. Vestnik Leninggradskogo Universiteta, Ser. Matematika (1971)