Linear port-Hamiltonian boundary control models and their equivalence
Authors
Arjan van der Schaft, Bernhard Maschke
Abstract
Systems of partial differential equations often admit different Hamiltonian representations, leading to different boundary variables that are either power or energy conjugate. It is shown that any linear infinite-dimensional Hamiltonian system can be transformed into one with constant symplectic matrix. Alternatively, any passive linear Hamiltonian system can be converted into one with constant energy storage matrix. The consideration of energy boundary variables points towards a new approach to control by interconnection. All this is illustrated on the example of the elastic rod.
Citation
- Journal: 2024 IEEE 63rd Conference on Decision and Control (CDC)
- Year: 2024
- Volume:
- Issue:
- Pages: 2709–2714
- Publisher: IEEE
- DOI: 10.1109/cdc56724.2024.10886403
BibTeX
@inproceedings{Schaft_2024,
title={{Linear port-Hamiltonian boundary control models and their equivalence}},
DOI={10.1109/cdc56724.2024.10886403},
booktitle={{2024 IEEE 63rd Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Schaft, Arjan van der and Maschke, Bernhard},
year={2024},
pages={2709--2714}
}
References
- Bendimerad-Hohl, On implicit and explicit representations for 1D distributed port-Hamiltonian systems. Proc. 26th Int. Symposium on Mathematical Theory of Networks and Systems (MTNS2024)
- Jeltsema, D. & Van Der Schaft, A. J. Lagrangian and Hamiltonian formulation of transmission line systems with boundary energy flow. Reports on Mathematical Physics 63, 55–74 (2009) – 10.1016/s0034-4877(09)00009-3
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Maschke, Linear boundary port-Hamiltonian systems with implicitly defined energy. ArXiv:2305.13772, submitted for publication
- Maschke, B. & Schaft, A. van der. Linear Boundary Port Hamiltonian Systems defined on Lagrangian submanifolds. IFAC-PapersOnLine 53, 7734–7739 (2020) – 10.1016/j.ifacol.2020.12.1526
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ran, A. C. M. & Rodman, L. Factorization of Matrix Polynomials with Symmetries. SIAM J. Matrix Anal. & Appl. 15, 845–864 (1994) – 10.1137/s0895479892235502
- Schöberl, M. & Siuka, A. Jet bundle formulation of infinite-dimensional port-Hamiltonian systems using differential operators. Automatica 50, 607–613 (2014) – 10.1016/j.automatica.2013.11.035
- Schaft, A. J. Controlled invariance for hamiltonian systems. Math. Systems Theory 18, 257–291 (1985) – 10.1007/bf01699473
- van der Schaft, A. Interconnections of input-output Hamiltonian systems with dissipation. 2016 IEEE 55th Conference on Decision and Control (CDC) 4686–4691 (2016) doi:10.1109/cdc.2016.7798983 – 10.1109/cdc.2016.7798983
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters 121, 31–37 (2018) – 10.1016/j.sysconle.2018.09.008
- van der Schaft, A. & Maschke, B. Dirac and Lagrange Algebraic Constraints in Nonlinear Port-Hamiltonian Systems. Vietnam J. Math. 48, 929–939 (2020) – 10.1007/s10013-020-00419-x
- van der Schaft, A. & Rapisarda, P. State Maps from Integration by Parts. SIAM J. Control Optim. 49, 2415–2439 (2011) – 10.1137/100806825
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, A. & Maschke, B. Differential operator Dirac structures. IFAC-PapersOnLine 54, 198–203 (2021) – 10.1016/j.ifacol.2021.11.078
- Trentelman, H. L. & Rapisarda, P. New Algorithms for Polynomial J-Spectral Factorization. Math. Control Signals Systems 12, 24–61 (1999) – 10.1007/pl00009844
- Willems, J. C. & Trentelman, H. L. On Quadratic Differential Forms. SIAM J. Control Optim. 36, 1703–1749 (1998) – 10.1137/s0363012996303062