Hamiltonian Representation of Higher Order Partial Differential Equations with Boundary Energy Flows
Authors
Abstract
This paper presents a system representation that can be applied to the description of the interaction between systems connected through common boundaries. The systems consist of partial differential equations that are first order with respect to time, but spatially higher order. The representation is derived from the instantaneous multisymplectic Hamiltonian formalism; therefore, it possesses the physical consistency with respect to energy. In the interconnection, particular pairs of control inputs and observing outputs, called port variables, defined on the boundaries are used. The port variables are systematically introduced from the representation.
Citation
- Journal: Journal of Applied Mathematics and Physics
- Year: 2015
- Volume: 03
- Issue: 11
- Pages: 1472–1490
- Publisher: Scientific Research Publishing, Inc.
- DOI: 10.4236/jamp.2015.311174
BibTeX
@article{Nishida_2015,
title={{Hamiltonian Representation of Higher Order Partial Differential Equations with Boundary Energy Flows}},
volume={03},
ISSN={2327-4379},
DOI={10.4236/jamp.2015.311174},
number={11},
journal={Journal of Applied Mathematics and Physics},
publisher={Scientific Research Publishing, Inc.},
author={Nishida, Gou},
year={2015},
pages={1472--1490}
}
References
- Nishida, G. & Maschke, B. Implicit Representation for Passivity-Based Boundary Controls. IFAC Proceedings Volumes 45, 200–207 (2012) – 10.3182/20120829-3-it-4022.00032
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Nishida, G. & Maschke, B. Implicit Representation for Passivity-Based Boundary Controls. IFAC Proceedings Volumes 45, 200–207 (2012) – 10.3182/20120829-3-it-4022.00032
- GOTAY, M. J. A Multisymplectic Framework for Classical Field Theory and the Calculus of Variations. Mechanics, Analysis and Geometry: 200 Years After Lagrange 203–235 (1991) doi:10.1016/b978-0-444-88958-4.50012-4 – 10.1016/b978-0-444-88958-4.50012-4
- Gotay, M. J. A multisymplectic framework for classical field theory and the calculus of variations II: space + time decomposition. Differential Geometry and its Applications 1, 375–390 (1991) – 10.1016/0926-2245(91)90014-z
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Macchelli, A. Passivity-Based Control of Implicit Port-Hamiltonian Systems. SIAM J. Control Optim. 52, 2422–2448 (2014) – 10.1137/130918228
- Gou Nishida & Yamakita, M. Formal Distributed Port-Hamiltonian Representation of Field Equations. Proceedings of the 44th IEEE Conference on Decision and Control 6009–6015 doi:10.1109/cdc.2005.1583123 – 10.1109/cdc.2005.1583123
- Nishida, G. & Maschke, B. Implicit Representation for Passivity-Based Boundary Controls. IFAC Proceedings Volumes 45, 200–207 (2012) – 10.3182/20120829-3-it-4022.00032
- Schöberl, M. & Siuka, A. Jet bundle formulation of infinite-dimensional port-Hamiltonian systems using differential operators. Automatica 50, 607–613 (2014) – 10.1016/j.automatica.2013.11.035
- Nishida, G. & Maschke, B. Implicit Representation for Passivity-Based Boundary Controls. IFAC Proceedings Volumes 45, 200–207 (2012) – 10.3182/20120829-3-it-4022.00032
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- van der Schaft, A. J. Implicit Hamiltonian systems with symmetry. Reports on Mathematical Physics 41, 203–221 (1998) – 10.1016/s0034-4877(98)80176-6
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- Yoshimura, H. & Marsden, J. E. Dirac structures in Lagrangian mechanics Part I: Implicit Lagrangian systems. Journal of Geometry and Physics 57, 133–156 (2006) – 10.1016/j.geomphys.2006.02.009
- Vankerschaver, J., Yoshimura, H. & Leok, M. The Hamilton-Pontryagin principle and multi-Dirac structures for classical field theories. Journal of Mathematical Physics 53, (2012) – 10.1063/1.4731481
- Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Nishida, G. & Maschke, B. Implicit Representation for Passivity-Based Boundary Controls. IFAC Proceedings Volumes 45, 200–207 (2012) – 10.3182/20120829-3-it-4022.00032
- Nishida, G., Maschke, B. & Ikeura, R. Boundary Integrability of Multiple Stokes–Dirac Structures. SIAM J. Control Optim. 53, 800–815 (2015) – 10.1137/110856058
- Nishida, G., Yamakita, M. & Luo, Z. Virtual Lagrangian Construction Method for Infinite-Dimensional Systems with Homotopy Operators. Lecture Notes in Control and Information Sciences 75–86 doi:10.1007/978-3-540-73890-9_5 – 10.1007/978-3-540-73890-9_5
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2
- Anderson, I. M. Introduction to the variational bicomplex. Contemporary Mathematics 51–73 (1992) doi:10.1090/conm/132/1188434 – 10.1090/conm/132/1188434
- Saunders, D. J. The Geometry of Jet Bundles. (1989) doi:10.1017/cbo9780511526411 – 10.1017/cbo9780511526411
- Giachetta, G., Mangiarotti, L. & Sardanashvily, G. New Lagrangian and Hamiltonian Methods in Field Theory. (1997) doi:10.1142/2199 – 10.1142/2199
- Nishida, G. & Maschke, B. Implicit Representation for Passivity-Based Boundary Controls. IFAC Proceedings Volumes 45, 200–207 (2012) – 10.3182/20120829-3-it-4022.00032
- Olver, P. J. Equivalence, Invariants and Symmetry. (1995) doi:10.1017/cbo9780511609565 – 10.1017/cbo9780511609565