Finite-dimensional observers for port-Hamiltonian systems of conservation laws
Authors
Paul Kotyczka, Henning Joos, Yongxin Wu, Yann Le Gorrec
Abstract
We consider the port-Hamiltonian formulation of systems of two conservation laws with canonical interdomain coupling in one spatial dimension. Based on the structure-preserving discretization in space and time, we propose two directions for the estimation of the discrete states from boundary measurement. First, we design full state Luenberger observers for the linear case. To guarantee unconditional asymptotic stability of the discrete-time error system, special attention is paid to the implementation of the correction term in the sense of implicit damping injection. Second, we exploit the flatness of the considered class of possibly nonlinear hyperbolic systems, which is preserved under the applied geometric discretization schemes, to obtain a state estimation based on boundary measurement. Numerical experiments serve as a basis for the comparison and discussion of the two proposed discrete-time estimation schemes for hyperbolic conservation laws.
Citation
- Journal: 2019 IEEE 58th Conference on Decision and Control (CDC)
- Year: 2019
- Volume:
- Issue:
- Pages: 6875–6880
- Publisher: IEEE
- DOI: 10.1109/cdc40024.2019.9030004
BibTeX
@inproceedings{Kotyczka_2019,
title={{Finite-dimensional observers for port-Hamiltonian systems of conservation laws}},
DOI={10.1109/cdc40024.2019.9030004},
booktitle={{2019 IEEE 58th Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Kotyczka, Paul and Joos, Henning and Wu, Yongxin and Gorrec, Yann Le},
year={2019},
pages={6875--6880}
}
References
- Kotyczka, P. & Lefèvre, L. Discrete-time port-Hamiltonian systems: A definition based on symplectic integration. Systems & Control Letters 133, 104530 (2019) – 10.1016/j.sysconle.2019.104530
- Kotyczka, P. Discrete-Time Flatness-Based Feedforward Control for the 1D Shallow Water Equations. IFAC-PapersOnLine 52, 42–47 (2019) – 10.1016/j.ifacol.2019.11.753
- flanders, Differential Forms with Applications to the Physical Sciences (1963)
- Morrison, P. J. Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70, 467–521 (1998) – 10.1103/revmodphys.70.467
- Kotyczka, P. Finite Volume Structure-Preserving Discretization of 1D Distributed-Parameter Port-Hamiltonian Systems. IFAC-PapersOnLine 49, 298–303 (2016) – 10.1016/j.ifacol.2016.07.457
- hairer, Geometric Numerical Integration Structure-Preserving Algorithms for Ordinary Differential Equations (2006)
- Guillot, P. & Millerioux, G. Flatness and Submersivity of Discrete-Time Dynamical Systems. IEEE Control Syst. Lett. 4, 337–342 (2020) – 10.1109/lcsys.2019.2926374
- Woittennek, F. On flatness and controllability of simple hyperbolic distributed parameter systems*. IFAC Proceedings Volumes 44, 14452–14457 (2011) – 10.3182/20110828-6-it-1002.02618
- Silvester, J. R. Determinants of block matrices. Math. Gaz. 84, 460–467 (2000) – 10.2307/3620776
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Vincent, B., Hudon, N., Lefèvre, L. & Dochain, D. Port-Hamiltonian observer design for plasma profile estimation in tokamaks. IFAC-PapersOnLine 49, 93–98 (2016) – 10.1016/j.ifacol.2016.10.761
- Venkatraman, A. & van der Schaft, A. J. Full-order observer design for a class of port-Hamiltonian systems. Automatica 46, 555–561 (2010) – 10.1016/j.automatica.2010.01.019
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics 361, 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- Biedermann, B., Rosenzweig, P. & Meurer, T. Passivity-Based Observer Design for State Affine Systems Using Interconnection and Damping Assignment. 2018 IEEE Conference on Decision and Control (CDC) 4662–4667 (2018) doi:10.1109/cdc.2018.8619143 – 10.1109/cdc.2018.8619143
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Luenberger, D. An introduction to observers. IEEE Trans. Automat. Contr. 16, 596–602 (1971) – 10.1109/tac.1971.1099826
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics 373, 673–697 (2018) – 10.1016/j.jcp.2018.06.051