Exponential decay rate bound of one-dimensional distributed port-Hamiltonian systems with boundary dissipation
Authors
Abstract
Distributed port-Hamiltonian systems with boundary damping and possible internal dissipation are considered. The multiplier method is used to show exponential decay Me−αt with an expression for M and α in terms of the system parameters. The exponential stability of port-Hamiltonian systems has been studied in the literature, but previous results did not provide an explicit bound on the decay rate. This result is illustrated by the boundary stabilization of a Timoshenko beam.
Citation
- Journal: 2022 IEEE 61st Conference on Decision and Control (CDC)
- Year: 2022
- Volume:
- Issue:
- Pages: 409–414
- Publisher: IEEE
- DOI: 10.1109/cdc51059.2022.9993139
BibTeX
@inproceedings{Mora_2022,
title={{Exponential decay rate bound of one-dimensional distributed port-Hamiltonian systems with boundary dissipation}},
DOI={10.1109/cdc51059.2022.9993139},
booktitle={{2022 IEEE 61st Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Mora, Luis A. and Morris, Kirsten},
year={2022},
pages={409--414}
}
References
- trostorff, Characterisation for Exponential Stability of port-Hamiltonian Systems. (2022)
- Macchelli, A., Le Gorrec, Y. & Ramirez, H. Exponential Stabilization of Port-Hamiltonian Boundary Control Systems via Energy Shaping. IEEE Transactions on Automatic Control vol. 65 4440–4447 (2020) – 10.1109/tac.2020.3004798
- komornik, Exact Controllability and Stabilization the Multiplier Method (1994)
- Cox, S. & Zuazua, E. The rate at which energy decays in a string damped at one end. Indiana University Mathematics Journal vol. 44 0–0 (1995) – 10.1512/iumj.1995.44.2001
- Macchelli, A. On the control by interconnection and exponential stabilisation of infinite dimensional port-Hamiltonian systems. 2016 IEEE 55th Conference on Decision and Control (CDC) 3137–3142 (2016) doi:10.1109/cdc.2016.7798739 – 10.1109/cdc.2016.7798739
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. (2014) doi:10.1561/9781601987877 – 10.1561/9781601987877
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Xu, C.-Z. Exact observability and exponential stability of infinite-dimensional bilinear systems. Mathematics of Control, Signals, and Systems vol. 9 73–93 (1996) – 10.1007/bf01211519
- Russell, D. L. & Weiss, G. A General Necessary Condition for Exact Observability. SIAM Journal on Control and Optimization vol. 32 1–23 (1994) – 10.1137/s036301299119795x
- mora, Exponential decay rate of port-hamiltonian systems with one-sided boundary damping. 2022 Proceedings of the 25th International Symposium on Mathematical Theory of Networks and Systems (2022)
- Zuazua, E. A remark on the observability of conservative linear systems. Contemporary Mathematics 47–59 (2012) doi:10.1090/conm/577/11462 – 10.1090/conm/577/11462
- Mattioni, A., Wu, Y. & Le Gorrec, Y. Infinite dimensional model of a double flexible-link manipulator: The Port-Hamiltonian approach. Applied Mathematical Modelling vol. 83 59–75 (2020) – 10.1016/j.apm.2020.02.008
- Siuka, A., Schöberl, M. & Schlacher, K. Port-Hamiltonian modelling and energy-based control of the Timoshenko beam. Acta Mechanica vol. 222 69–89 (2011) – 10.1007/s00707-011-0510-2
- Morris, K. A. & Özer, A. Ö. Modeling and Stabilizability of Voltage-Actuated Piezoelectric Beams with Magnetic Effects. SIAM Journal on Control and Optimization vol. 52 2371–2398 (2014) – 10.1137/130918319
- Morris, K. & Ozer, A. O. Strong stabilization of piezoelectric beams with magnetic effects. 52nd IEEE Conference on Decision and Control 3014–3019 (2013) doi:10.1109/cdc.2013.6760341 – 10.1109/cdc.2013.6760341
- Zimmer, B. J., Lipshitz, S. P., Morris, K. A., Vanderkooy, J. & Obasi, E. E. An Improved Acoustic Model for Active Noise Control in a Duct. Journal of Dynamic Systems, Measurement, and Control vol. 125 382–395 (2003) – 10.1115/1.1592192
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Jacob, B. & Kaiser, J. T. On Exact Controllability of Infinite-Dimensional Linear Port-Hamiltonian Systems. IEEE Control Systems Letters vol. 3 661–666 (2019) – 10.1109/lcsys.2019.2916814
- villegas, Boundary control for a class of dissipative differential operators including diffusion systems. Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems (2006)
- Jacob, B. & Zwart, H. Observability for port-Hamiltonian systems. 2021 European Control Conference (ECC) 2052–2057 (2021) doi:10.23919/ecc54610.2021.9654840 – 10.23919/ecc54610.2021.9654840
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Zwart, H., Le Gorrec, Y., Maschke, B. & Villegas, J. Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain. ESAIM: Control, Optimisation and Calculus of Variations vol. 16 1077–1093 (2009) – 10.1051/cocv/2009036