A discrete exterior approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems
Authors
Marko Seslija, Jacquelien M.A. Scherpen, Arjan van der Schaft
Abstract
This paper addresses the issue of structure-preserving discretization of open distributed-parameter systems with Hamiltonian dynamics. Employing the formalism of discrete exterior calculus, we introduce simplicial Dirac structures as discrete analogues of the Stokes-Dirac structure and demonstrate that they provide a natural framework for deriving finite-dimensional port-Hamiltonian systems that emulate their infinite-dimensional counterparts. This approach of discrete differential geometry, rather than discretizing the partial differential equations, allows to first discretize the underlying Stokes-Dirac structure and then to impose the corresponding finite-dimensional port-Hamiltonian dynamics. In this manner, we preserve a number of important topological and geometrical properties of the system.
Citation
- Journal: IEEE Conference on Decision and Control and European Control Conference
- Year: 2011
- Volume:
- Issue:
- Pages: 7003–7008
- Publisher: IEEE
- DOI: 10.1109/cdc.2011.6160579
BibTeX
@inproceedings{Seslija_2011,
title={{A discrete exterior approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems}},
DOI={10.1109/cdc.2011.6160579},
booktitle={{IEEE Conference on Decision and Control and European Control Conference}},
publisher={IEEE},
author={Seslija, Marko and Scherpen, Jacquelien M.A. and van der Schaft, Arjan},
year={2011},
pages={7003--7008}
}
References
- Lew, A., Marsden, J. E., Ortiz, M. & West, M. Variational time integrators. Numerical Meth Engineering 60, 153–212 (2004) – 10.1002/nme.958
- holst, Geometric Variational Crimes Hilbert Complexes Finite Element Exterior Calculus and Problems on Hypersurfaces (2010)
- Lew, A., Marsden, J. E., Ortiz, M. & West, M. Asynchronous Variational Integrators. Archive for Rational Mechanics and Analysis 167, 85–146 (2003) – 10.1007/s00205-002-0212-y
- hatcher, Algebraic Topology (2001)
- Hiptmair, R. Finite elements in computational electromagnetism. Acta Numerica 11, 237–339 (2002) – 10.1017/s0962492902000041
- hirani, Discrete Exterior Calculus (2003)
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica 40, 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- gotay, Momentum Maps and the Hamiltonian Structure of Classical Relativistic Field Theories (1997)
- Gross, P. W. & Kotiuga, P. R. Electromagnetic Theory and Computation. (2004) doi:10.1017/cbo9780511756337 – 10.1017/cbo9780511756337
- Marsden, J. E., Patrick, G. W. & Shkoller, S. Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs. Communications in Mathematical Physics 199, 351–395 (1998) – 10.1007/s002200050505
- macchelli, Port Hamiltonian systems A unified approach for modeling and control finite and infinite dimensional physical systems (2003)
- Marsden, J. E., Pekarsky, S., Shkoller, S. & West, M. Variational methods, multisymplectic geometry and continuum mechanics. Journal of Geometry and Physics 38, 253–284 (2001) – 10.1016/s0393-0440(00)00066-8
- munkres, Elements of Algebraic Topology (1984)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der schaft, Conservation laws and open systems on higherdimensional networks. Proc 47th IEEE Conf on Decision and Control (2008)
- van der Schaft, A. & Maschke, B. Conservation Laws and Lumped System Dynamics. Model-Based Control: 31–48 (2009) doi:10.1007/978-1-4419-0895-7_3 – 10.1007/978-1-4419-0895-7_3
- stern, Geometric Computational Electrodynamics with Variational Integrators and Discrete Differential Forms (2009)
- talasila, The wave equation as a port-hamiltonian system and a finite dimensional approximation. Proc 15th Int Symp Mathematical Theory of Networks and Systems (2002)
- Voss, T. & Scherpen, J. M. A. Structure Preserving Spatial Discretization of a 1-D Piezoelectric Timoshenko Beam. Multiscale Model. Simul. 9, 129–154 (2011) – 10.1137/100789038
- bossavit, Computational Electromagnetism Variational Formulations Complementarity Edge Elements (1998)
- Bassi, L., Macchelli, A. & Melchiorri, C. An Algorithm to Discretize One-Dimensional Distributed Port Hamiltonian Systems. Lecture Notes in Control and Information Sciences 61–73 doi:10.1007/978-3-540-73890-9_4 – 10.1007/978-3-540-73890-9_4
- dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations (1993)
- Arnold, D., Falk, R. & Winther, R. Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. 47, 281–354 (2010) – 10.1090/s0273-0979-10-01278-4
- desbrun, Discrete Exterior Calculus (0)
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) – 10.2307/2001258
- courant, Beyond poisson structures. Seminaire Sud-rhodanien de Geometrie VIII Travaux en Cours (1988)
- Desbrun, M., Kanso, E. & Tong, Y. Discrete Differential Forms for Computational Modeling. Oberwolfach Seminars 287–324 doi:10.1007/978-3-7643-8621-4_16 – 10.1007/978-3-7643-8621-4_16
- Desbrun, M., Hirani, A. N. & Marsden, J. E. Discrete exterior calculus for variational problems in computer vision and graphics. 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475) 4902–4907 doi:10.1109/cdc.2003.1272393 – 10.1109/cdc.2003.1272393