Exergetic Port-Hamiltonian systems modeling language
Authors
Markus Lohmayer, Owen Lynch, Sigrid Leyendecker
Abstract
Mathematical modeling of real-world physical systems requires the consistent combination of a multitude of physical laws and phenomenological models. This challenging task can be greatly simplified by hierarchically decomposing systems into ultimately simple components. Moreover, the use of diagrams for expressing the decomposition helps make the process more intuitive and facilitates communication, even with non-experts. As an important requirement, models have to respect fundamental physical laws such as the first and the second law of thermodynamics. While some existing modeling frameworks make such guarantees based on structural properties of their models, they lack a formal graphical syntax. We present a compositional and thermodynamically consistent modeling language with a graphical syntax. In terms of its semantics, we essentially endow port-Hamiltonian systems with additional structural properties and a fixed physical interpretation, ensuring thermodynamic consistency in a manner closely related to the metriplectic or GENERIC formalism. While port-Hamiltonian systems are inspired by graphical modeling with bond graphs, neither the link between the two, nor bond graphs themselves, can be easily formalized. In contrast, our syntax is based on a specialization of the well-studied operad of undirected wiring diagrams. By combining a compositional, graphical syntax with an energy-based, thermodynamic approach, the presented modeling language simplifies the understanding, reuse, and modification of complex physical models.
Keywords
bond graphs, compositionality, generic, metriplectic structure, nonequilibrium thermodynamics, undirected wiring diagrams
Citation
- Journal: Heliyon
- Year: 2026
- Volume: 12
- Issue: 1
- Pages: e44191
- Publisher: Elsevier BV
- DOI: 10.1016/j.heliyon.2025.e44191
BibTeX
@article{Lohmayer_2026,
title={{Exergetic Port-Hamiltonian systems modeling language}},
volume={12},
ISSN={2405-8440},
DOI={10.1016/j.heliyon.2025.e44191},
number={1},
journal={Heliyon},
publisher={Elsevier BV},
author={Lohmayer, Markus and Lynch, Owen and Leyendecker, Sigrid},
year={2026},
pages={e44191}
}References
- Courant TJ (1990) Dirac manifolds. Trans Amer Math Soc 319(2):631–661. https://doi.org/10.1090/s0002-9947-1990-0998124- – 10.1090/s0002-9947-1990-0998124-1
- Badlyan, Open physical systems: from GENERIC to port-Hamiltonian systems. (2018)
- Lohmayer M, Kotyczka P, Leyendecker S (2021) Exergetic port-Hamiltonian systems: modelling basics. Mathematical and Computer Modelling of Dynamical Systems 27(1):489–521. https://doi.org/10.1080/13873954.2021.197959 – 10.1080/13873954.2021.1979592
- Control 1(2–3):173–378. https://doi.org/10.1561/260000000 – 10.1561/2600000002
- Morrison PJ (1984) Bracket formulation for irreversible classical fields. Physics Letters A 100(8):423–427. https://doi.org/10.1016/0375-9601(84)90635- – 10.1016/0375-9601(84)90635-2
- Pavelka, (2018)
- Paynter, (1961)
- Borutzky, (2010)
- Fong, (2019)
- Mac Lane, (1998)
- Lohmayer M, Kraus M, Leyendecker S (2026) Energy-based, geometric, and compositional formulation of fluid and plasma models. Communications in Nonlinear Science and Numerical Simulation 152:109384. https://doi.org/10.1016/j.cnsns.2025.10938 – 10.1016/j.cnsns.2025.109384
- Callen, (1985)
- Öttinger, (2005)
- de Groot, (1984)
- Onsager L (1931) Reciprocal Relations in Irreversible Processes. I. Phys Rev 37(4):405–426. https://doi.org/10.1103/physrev.37.40 – 10.1103/physrev.37.405
- Spivak, (2013)
- Baez JC, Erbele J (2015) Categories in Control. TAC 30:836–881. https://doi.org/10.70930/tac/d5nq5dv – 10.70930/tac/d5nq5dv8
- Libkind, (2020)
- Myers, (2023)
- Maschke B (1991) Geometrical formulation of bond graph dynamics with application to mechanisms. Journal of the Franklin Institute 328(5–6):723–740. https://doi.org/10.1016/0016-0032(91)90050- – 10.1016/0016-0032(91)90050-d
- Breedveld PC (1982) Thermodynamic Bond Graphs and the Problem of Thermal Inertance. Journal of the Franklin Institute 314(1):15–40. https://doi.org/10.1016/0016-0032(82)90050- – 10.1016/0016-0032(82)90050-3
- Willems, Qualitative behavior of interconnected systems. (1974)
- (2007) The Behavioral Approach to Open and Interconnected Systems. IEEE Control Syst 27(6):46–99. https://doi.org/10.1109/mcs.2007.90692 – 10.1109/mcs.2007.906923
- Maschke BM, Van Der Schaft AJ, Breedveld PC (1992) An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute 329(5):923–966. https://doi.org/10.1016/s0016-0032(92)90049- – 10.1016/s0016-0032(92)90049-m
- van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. AEU - Archiv für Elektronik und Übertragungstechnik (1995)
- Bursztyn, A brief introduction to Dirac manifolds. (2013)
- Grmela, Particle and bracket formulations of kinetic equations. (1984)
- Grmela M (1984) Bracket formulation of dissipative fluid mechanics equations. Physics Letters A 102(8):355–358. https://doi.org/10.1016/0375-9601(84)90297- – 10.1016/0375-9601(84)90297-4
- Kaufman AN (1984) Dissipative hamiltonian systems: A unifying principle. Physics Letters A 100(8):419–422. https://doi.org/10.1016/0375-9601(84)90634- – 10.1016/0375-9601(84)90634-0
- Grmela M, Öttinger HC (1997) Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys Rev E 56(6):6620–6632. https://doi.org/10.1103/physreve.56.662 – 10.1103/physreve.56.6620
- Baez JC, Pollard BS (2017) A compositional framework for reaction networks. Rev Math Phys 29(09):1750028. https://doi.org/10.1142/s0129055x1750028 – 10.1142/s0129055x17500283
- Coya, (2017)
- Baez, (2018)
- Baez, (2020)
- Foley, Operads for complex system design specification, analysis and synthesis. Proc. R. Soc. A Math. Phys. Eng. Sci. (2021)
- Leinster, (2004)
- Yau, (2016)
- Lohmayer, EPHS: a port-Hamiltonian modelling language. (2022)
- Spivak, (2014)
- Yau, (2018)
- Vagner, Algebras of open dynamical systems on the operad of wiring diagrams. Theory Appl. Categ. (2015)
- Schultz P, Spivak DI, Vasilakopoulou C (2019) Dynamical Systems and Sheaves. Appl Categor Struct 28(1):1–57. https://doi.org/10.1007/s10485-019-09565- – 10.1007/s10485-019-09565-x
- Libkind, (2021)
- Lynch, (2022)
- Fredkin E (1960) Trie memory. Commun ACM 3(9):490–499. https://doi.org/10.1145/367390.36740 – 10.1145/367390.367400
- Pavelka M, Klika V, Grmela M (2014) Time reversal in nonequilibrium thermodynamics. Phys Rev E 90(6). https://doi.org/10.1103/physreve.90.06213 – 10.1103/physreve.90.062131
- Lee, (2012)
- Mielke A, Renger DRM, Peletier MA (2016) A Generalization of Onsager’s Reciprocity Relations to Gradient Flows with Nonlinear Mobility. Journal of Non-Equilibrium Thermodynamics 41(2):141–149. https://doi.org/10.1515/jnet-2015-007 – 10.1515/jnet-2015-0073
- Willems JC (1972) Dissipative dynamical systems part I: General theory. Arch Rational Mech Anal 45(5):321–351. https://doi.org/10.1007/bf0027649 – 10.1007/bf00276493
- Gawthrop PJ, Pan M, Crampin EJ (2021) Modular dynamic biomolecular modelling with bond graphs: the unification of stoichiometry, thermodynamics, kinetics and data. J R Soc Interface 18(181):20210478. https://doi.org/10.1098/rsif.2021.047 – 10.1098/rsif.2021.0478
- Birkett SH, Roe PH (1989) The mathematical foundations of bond graphs—I. Algebraic theory. Journal of the Franklin Institute 326(3):329–350. https://doi.org/10.1016/0016-0032(89)90015- – 10.1016/0016-0032(89)90015-x
- Pfeifer M, Caspart S, Hampel S, Muller C, Krebs S, Hohmann S (2020) Explicit port-Hamiltonian formulation of multi-bond graphs for an automated model generation. Automatica 120:109121. https://doi.org/10.1016/j.automatica.2020.10912 – 10.1016/j.automatica.2020.109121
- Eberard, Port contact systems for irreversible thermodynamical systems. (2005)
- Ramirez H, Le Gorrec Y (2022) An Overview on Irreversible Port-Hamiltonian Systems. Entropy 24(10):1478. https://doi.org/10.3390/e2410147 – 10.3390/e24101478
- van der Schaft A, Maschke B (2019) About Some System-Theoretic Properties of Port-Thermodynamic Systems. Lecture Notes in Computer Science 228–23 – 10.1007/978-3-030-26980-7_24
- Lohmayer, Exergetic port-Hamiltonian systems for multibody dynamics. Multibody Syst. Dyn. (2024)
- Lohmayer, (2025)