Explicit port-Hamiltonian formulation of multi-bond graphs for an automated model generation
Authors
Martin Pfeifer, Sven Caspart, Silja Hampel, Charles Muller, Stefan Krebs, Sören Hohmann
Abstract
Port-Hamiltonian system theory is a well-known framework for the control of complex physical systems. The majority of port-Hamiltonian control design methods base on an explicit input-state-output port-Hamiltonian model for the system under consideration. However in the literature, little effort has been made towards a systematic, automatable derivation of such explicit models. In this paper, we present a constructive, formally rigorous method for an explicit port-Hamiltonian formulation of multi-bond graphs. Two conditions, one necessary and one sufficient, for the existence of an explicit port-Hamiltonian formulation of a multi-bond graph are given. We summarise our approach in an algorithm for the automated generation of an explicit port-Hamiltonian model from a given multi-bond graph. An academic example illustrates the results of this paper.
Keywords
Port-Hamiltonian systems; Bond graphs; Automated modelling; State-space models; Model generation
Citation
- Journal: Automatica
- Year: 2020
- Volume: 120
- Issue:
- Pages: 109121
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2020.109121
BibTeX
@article{Pfeifer_2020,
title={{Explicit port-Hamiltonian formulation of multi-bond graphs for an automated model generation}},
volume={120},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2020.109121},
journal={Automatica},
publisher={Elsevier BV},
author={Pfeifer, Martin and Caspart, Sven and Hampel, Silja and Muller, Charles and Krebs, Stefan and Hohmann, Sören},
year={2020},
pages={109121}
}
References
- Batlle, C., Massana, I. & Simo, E. Representation of a general composition of Dirac structures. IEEE Conference on Decision and Control and European Control Conference 5199–5204 (2011) doi:10.1109/cdc.2011.6160588 – 10.1109/cdc.2011.6160588
- Bloch, Representations of Dirac structures on vector spaces and nonlinear L-C circuits. (1999)
- Borutzky, (2010)
- Donaire, A. & Junco, S. Derivation of Input-State-Output Port-Hamiltonian Systems from bond graphs. Simulation Modelling Practice and Theory vol. 17 137–151 (2009) – 10.1016/j.simpat.2008.02.007
- Falaize, A. & Hélie, T. Passive Guaranteed Simulation of Analog Audio Circuits: A Port-Hamiltonian Approach. Applied Sciences vol. 6 273 (2016) – 10.3390/app6100273
- Falaize, (2019)
- Golo, (2000)
- Golo, Hamiltonian formulation of bond graphs. (2003)
- Jacob, (2012)
- Karnopp, (2012)
- Kotyczka, P. Local linear dynamics assignment in IDA-PBC. Automatica vol. 49 1037–1044 (2013) – 10.1016/j.automatica.2013.01.028
- Kotyczka, P. & Lefèvre, L. Discrete-time port-Hamiltonian systems based on Gauss-Legendre collocation. IFAC-PapersOnLine vol. 51 125–130 (2018) – 10.1016/j.ifacol.2018.06.035
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Lopes, (2016)
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Mehl, C., Mehrmann, V. & Sharma, P. Stability Radii for Linear Hamiltonian Systems with Dissipation Under Structure-Preserving Perturbations. SIAM Journal on Matrix Analysis and Applications vol. 37 1625–1654 (2016) – 10.1137/16m1067330
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Pfeifer, Interval input-state-output estimation for linear port-hamiltonian systems with application to power distribution systems. (2019)
- Ramirez, H., Zwart, H. & Le Gorrec, Y. Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control. Automatica vol. 85 61–69 (2017) – 10.1016/j.automatica.2017.07.045
- Rosenberg, R. C. State-Space Formulation for Bond Graph Models of Multiport Systems. Journal of Dynamic Systems, Measurement, and Control vol. 93 35–40 (1971) – 10.1115/1.3426458
- van der Schaft, (2016)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. AEU - Archiv für Elektronik und Übertragungstechnik (1995)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- Vincent, B., Hudon, N., Lefèvre, L. & Dochain, D. Port-Hamiltonian observer design for plasma profile estimation in tokamaks. IFAC-PapersOnLine vol. 49 93–98 (2016) – 10.1016/j.ifacol.2016.10.761
- Wellstead, (1979)