Energy Matching in Reduced Passive and Port-Hamiltonian Systems
Authors
Tobias Holicki, Jonas Nicodemus, Paul Schwerdtner, Benjamin Unger
Abstract
No available
Citation
- Journal: SIAM Journal on Control and Optimization
- Year: 2025
- Volume: 63
- Issue: 3
- Pages: 2154–2176
- Publisher: Society for Industrial & Applied Mathematics (SIAM)
- DOI: 10.1137/23m1600931
BibTeX
@article{Holicki_2025,
title={{Energy Matching in Reduced Passive and Port-Hamiltonian Systems}},
volume={63},
ISSN={1095-7138},
DOI={10.1137/23m1600931},
number={3},
journal={SIAM Journal on Control and Optimization},
publisher={Society for Industrial & Applied Mathematics (SIAM)},
author={Holicki, Tobias and Nicodemus, Jonas and Schwerdtner, Paul and Unger, Benjamin},
year={2025},
pages={2154--2176}
}
References
- Afkham, B. M. & Hesthaven, J. S. Structure Preserving Model Reduction of Parametric Hamiltonian Systems. SIAM J. Sci. Comput. 39, A2616–A2644 (2017) – 10.1137/17m1111991
- Maboudi Afkham, B. & Hesthaven, J. S. Structure-Preserving Model-Reduction of Dissipative Hamiltonian Systems. J Sci Comput 81, 3–21 (2018) – 10.1007/s10915-018-0653-6
- Altmann, R., Mehrmann, V. & Unger, B. Port-Hamiltonian formulations of poroelastic network models. Mathematical and Computer Modelling of Dynamical Systems 27, 429–452 (2021) – 10.1080/13873954.2021.1975137
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters 100, 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Antoulas, A. C. Approximation of Large-Scale Dynamical Systems. (2005) doi:10.1137/1.9780898718713 – 10.1137/1.9780898718713
- Antoulas, A. C., Beattie, C. A. & Güğercin, S. Interpolatory Methods for Model Reduction. (Society for Industrial and Applied Mathematics, 2020). doi:10.1137/1.9781611976083 – 10.1137/1.9781611976083
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Math. Control Signals Syst. 30, (2018) – 10.1007/s00498-018-0223-3
- Model Reduction and Approximation. (2017) doi:10.1137/1.9781611974829 – 10.1137/1.9781611974829
- Benner, P., Goyal, P. & PontesDuffPereira, I. Gramians, Energy Functionals, and Balanced Truncation for Linear Dynamical Systems With Quadratic Outputs. IEEE Trans. Automat. Contr. 67, 886–893 (2022) – 10.1109/tac.2021.3086319
- Borja, P., Scherpen, J. M. A. & Fujimoto, K. Extended Balancing of Continuous LTI Systems: A Structure-Preserving Approach. IEEE Trans. Automat. Contr. 68, 257–271 (2023) – 10.1109/tac.2021.3138645
- Boyd, S. & Vandenberghe, L. Convex Optimization. (2004) doi:10.1017/cbo9780511804441 – 10.1017/cbo9780511804441
- Breiten, T., Morandin, R. & Schulze, P. Error bounds for port-Hamiltonian model and controller reduction based on system balancing. Computers & Mathematics with Applications 116, 100–115 (2022) – 10.1016/j.camwa.2021.07.022
- Breiten, T. & Unger, B. Passivity preserving model reduction via spectral factorization. Automatica 142, 110368 (2022) – 10.1016/j.automatica.2022.110368
- Buchfink P., Math. Comput. Appl. (2019)
- Califano, F., Dijkshoorn, A., Roodink, S., Stramigioli, S. & Krijnen, G. Energy-Aware Control of Euler–Bernoulli Beams by Means of an Axial Load. IEEE/ASME Trans. Mechatron. 27, 5959–5968 (2022) – 10.1109/tmech.2022.3192324
- Camlibel, M. K., Iannelli, L. & Vasca, F. Passivity and complementarity. Math. Program. 145, 531–563 (2013) – 10.1007/s10107-013-0678-4
- Cherifi, K., Gernandt, H. & Hinsen, D. The difference between port-Hamiltonian, passive and positive real descriptor systems. Math. Control Signals Syst. 36, 451–482 (2023) – 10.1007/s00498-023-00373-2
- Coey, C., Kapelevich, L. & Vielma, J. P. Solving Natural Conic Formulations with Hypatia.jl. INFORMS Journal on Computing 34, 2686–2699 (2022) – 10.1287/ijoc.2022.1202
- Desai, U. & Pal, D. A transformation approach to stochastic model reduction. IEEE Trans. Automat. Contr. 29, 1097–1100 (1984) – 10.1109/tac.1984.1103438
- Egger, H., Kugler, T., Liljegren-Sailer, B., Marheineke, N. & Mehrmann, V. On Structure-Preserving Model Reduction for Damped Wave Propagation in Transport Networks. SIAM J. Sci. Comput. 40, A331–A365 (2018) – 10.1137/17m1125303
- – 10.1002/(sici)1097-007x(200003/04)28:2<131::aid-cta100>3.0.co;2-w
- Garstka, M., Cannon, M. & Goulart, P. COSMO: A Conic Operator Splitting Method for Convex Conic Problems. J Optim Theory Appl 190, 779–810 (2021) – 10.1007/s10957-021-01896-x
- Gosea, I. V. & Gugercin, S. Data-Driven Modeling of Linear Dynamical Systems with Quadratic Output in the AAA Framework. J Sci Comput 91, (2022) – 10.1007/s10915-022-01771-5
- Gugercin, S., Polyuga, R. V., Beattie, C. & van der Schaft, A. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica 48, 1963–1974 (2012) – 10.1016/j.automatica.2012.05.052
- Günther M., Surv. Math. Ind. (1999)
- Günther M., Surv. Math. Ind. (1999)
- Lancaster P., The Theory of Matrices: With Applications, Computer Science and Scientific Computing (1985)
- Lubin, M. et al. JuMP 1.0: recent improvements to a modeling language for mathematical optimization. Math. Prog. Comp. 15, 581–589 (2023) – 10.1007/s12532-023-00239-3
- Mackenroth U., Robust Control Systems: Theory and Case Studies (2013)
- Magnus, J. R. & Magnus, J. R. Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley Series in Probability and Statistics (2019) doi:10.1002/9781119541219 – 10.1002/9781119541219
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica 32, 395–515 (2023) – 10.1017/s0962492922000083
- K Mogensen, P. & N Riseth, A. Optim: A mathematical optimization package for Julia. JOSS 3, 615 (2018) – 10.21105/joss.00615
- Morandin, R., Nicodemus, J. & Unger, B. Port-Hamiltonian Dynamic Mode Decomposition. SIAM J. Sci. Comput. 45, A1690–A1710 (2023) – 10.1137/22m149329x
- Ober, R. Balanced Parametrization of Classes of Linear Systems. SIAM J. Control Optim. 29, 1251–1287 (1991) – 10.1137/0329065
- Peng, L. & Mohseni, K. Symplectic Model Reduction of Hamiltonian Systems. SIAM J. Sci. Comput. 38, A1–A27 (2016) – 10.1137/140978922
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica 46, 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- Pulch, R. & Narayan, A. Balanced Truncation for Model Order Reduction of Linear Dynamical Systems with Quadratic Outputs. SIAM J. Sci. Comput. 41, A2270–A2295 (2019) – 10.1137/17m1148797
- Rashad, R. et al. Energy Aware Impedance Control of a Flying End-Effector in the Port-Hamiltonian Framework. IEEE Trans. Robot. 38, 3936–3955 (2022) – 10.1109/tro.2022.3183532
- Reis, T., Rendel, O. & Voigt, M. The Kalman–Yakubovich–Popov inequality for differential-algebraic systems. Linear Algebra and its Applications 485, 153–193 (2015) – 10.1016/j.laa.2015.06.021
- Reis, T. & Stykel, T. Positive real and bounded real balancing for model reduction of descriptor systems. International Journal of Control 83, 74–88 (2009) – 10.1080/00207170903100214
- Sato, K. & Sato, H. Structure-Preserving $H^2$ Optimal Model Reduction Based on the Riemannian Trust-Region Method. IEEE Trans. Automat. Contr. 63, 505–512 (2018) – 10.1109/tac.2017.2723259
- Schwerdtner, P. & Voigt, M. SOBMOR: Structured Optimization-Based Model Order Reduction. SIAM J. Sci. Comput. 45, A502–A529 (2023) – 10.1137/20m1380235
- Sturm, J. F. Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones. Optimization Methods and Software 11, 625–653 (1999) – 10.1080/10556789908805766
- Van Beeumen, R., Meerbergen, K., Simos, T. E., Psihoyios, G. & Tsitouras, Ch. Model Reduction by Balanced Truncation of Linear Systems with a Quadratic Output. AIP Conference Proceedings 2033–2036 (2010) doi:10.1063/1.3498345 – 10.1063/1.3498345
- Van Beeumen, R., Van Nimmen, K., Lombaert, G. & Meerbergen, K. Model reduction for dynamical systems with quadratic output. Numerical Meth Engineering 91, 229–248 (2012) – 10.1002/nme.4255
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Willems, J. Least squares stationary optimal control and the algebraic Riccati equation. IEEE Trans. Automat. Contr. 16, 621–634 (1971) – 10.1109/tac.1971.1099831
- Willems, J. C. Dissipative dynamical systems Part II: Linear systems with quadratic supply rates. Arch. Rational Mech. Anal. 45, 352–393 (1972) – 10.1007/bf00276494