Energy-Aware Control of Euler–Bernoulli Beams by Means of an Axial Load
Authors
Federico Califano, Alexander Dijkshoorn, Sander Roodink, Stefano Stramigioli, Gijs Krijnen
Abstract
In this article, we present a novel energy-based control architecture on Euler–Bernoulli beams equipped with a variable stiffness mechanism. To proof the methodological validity of the approach, two control laws are developed using the power balance of the system, explicitly encoded in its infinite-dimensional port-Hamiltonian formulation. The laws are designed to stabilize the beam and to induce limit cycles on it, respectively, increasing damping by removing energy from the system and countering damping by injecting energy into the system. The variable stiffness mechanism is realized through a distributed axial load, applied by means of a wire on a winch, and is able to achieve effective stiffness variation due to softening. An experimental setup is designed to validate the theory. 3-D-printed, embedded, piezoresistive strain gauges are used as sensing units for closed-loop control. We show how the developed approach conveniently deals with such sensors, overcoming potential problems arising from their nonideal response. Experimental results show the validity and the robustness of the proposed control laws. High speed videos are used to validate the measurements.
Citation
- Journal: IEEE/ASME Transactions on Mechatronics
- Year: 2022
- Volume: 27
- Issue: 6
- Pages: 5959–5968
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tmech.2022.3192324
BibTeX
@article{Califano_2022,
title={{Energy-Aware Control of Euler–Bernoulli Beams by Means of an Axial Load}},
volume={27},
ISSN={1941-014X},
DOI={10.1109/tmech.2022.3192324},
number={6},
journal={IEEE/ASME Transactions on Mechatronics},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Califano, Federico and Dijkshoorn, Alexander and Roodink, Sander and Stramigioli, Stefano and Krijnen, Gijs},
year={2022},
pages={5959--5968}
}
References
- Ecker, H. & Pumho¨ssel, T. Experimental Results on Parametric Excitation Damping of an Axially Loaded Cantilever Beam. Volume 4: 7th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B and C 689–698 (2009) doi:10.1115/detc2009-86555 – 10.1115/detc2009-86555
- Simplify3D: Professional 3D printing software. (2022)
- Hohimer, C. J., Petrossian, G., Ameli, A., Mo, C. & Pötschke, P. 3D printed conductive thermoplastic polyurethane/carbon nanotube composites for capacitive and piezoresistive sensing in soft pneumatic actuators. Additive Manufacturing vol. 34 101281 (2020) – 10.1016/j.addma.2020.101281
- Dijkshoorn, A. et al. Characterizing the Electrical Properties of Anisotropic, 3D-Printed Conductive Sheets for Sensor Applications. IEEE Sensors Journal vol. 20 14218–14227 (2020) – 10.1109/jsen.2020.3007249
- Stano, G., Di Nisio, A., Lanzolla, A. & Percoco, G. Additive manufacturing and characterization of a load cell with embedded strain gauges. Precision Engineering vol. 62 113–120 (2020) – 10.1016/j.precisioneng.2019.11.019
- charmant, Kinovea version 0 8 15 (2022)
- Kosmas, D., Schouten, M. & Krijnen, G. Hysteresis Compensation of 3D Printed Sensors by a Power Law Model with Reduced Parameters. 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS) 1–4 (2020) doi:10.1109/fleps49123.2020.9239580 – 10.1109/fleps49123.2020.9239580
- inman, Engineering Vibration (2014)
- Lazarus, N. & Bedair, S. S. Creating 3D printed sensor systems with conductive composites. Smart Materials and Structures vol. 30 015020 (2020) – 10.1088/1361-665x/abcbe2
- Dijkshoorn, A. et al. Embedded sensing: integrating sensors in 3-D printed structures. Journal of Sensors and Sensor Systems vol. 7 169–181 (2018) – 10.5194/jsss-7-169-2018
- Schouten, M. et al. A Review of Extrusion-Based 3D Printing for the Fabrication of Electro- and Biomechanical Sensors. IEEE Sensors Journal vol. 21 12900–12912 (2021) – 10.1109/jsen.2020.3042436
- Maurizi, M. et al. Dynamic Measurements Using FDM 3D-Printed Embedded Strain Sensors. Sensors vol. 19 2661 (2019) – 10.3390/s19122661
- Palmieri, M., Slavič, J. & Cianetti, F. Single-process 3D-printed structures with vibration durability self-awareness. Additive Manufacturing vol. 47 102303 (2021) – 10.1016/j.addma.2021.102303
- zolfagharian, Closed-loop 4D-printed soft robots. Material (2020)
- Habib, M. S. & Radcliffe, C. J. Active Parametric Damping of Distributed Parameter Beam Transverse Vibration. 1989 American Control Conference 2773–2778 (1989) doi:10.23919/acc.1989.4790661 – 10.23919/acc.1989.4790661
- pumhössel, Active damping of vibrations of a cantilever beam by axial force control. Proc 21st Biennial Conf Int Des Eng Tech Conf Comput Inf Eng Conf (0)
- Issa, J., Mukherjee, R. & Shaw, S. W. Vibration Suppression in Structures Using Cable Actuators. Journal of Vibration and Acoustics vol. 132 (2010) – 10.1115/1.4000783
- Nudehi, S., Mukherjee, R. & Shaw, S. W. Active Vibration Control of a Flexible Beam Using a Buckling-Type End Force. Journal of Dynamic Systems, Measurement, and Control vol. 128 278–286 (2005) – 10.1115/1.2192836
- Ondra, V. & Titurus, B. Free vibration and stability analysis of a cantilever beam axially loaded by an intermittently attached tendon. Mechanical Systems and Signal Processing vol. 158 107739 (2021) – 10.1016/j.ymssp.2021.107739
- Califano, F. et al. Decoding and realising flapping flight with port-Hamiltonian system theory. Annual Reviews in Control vol. 51 37–46 (2021) – 10.1016/j.arcontrol.2021.03.009
- Dumstorff, G., Paul, S. & Lang, W. Integration Without Disruption: The Basic Challenge of Sensor Integration. IEEE Sensors Journal vol. 14 2102–2111 (2014) – 10.1109/jsen.2013.2294626
- Manti, M., Cacucciolo, V. & Cianchetti, M. Stiffening in Soft Robotics: A Review of the State of the Art. IEEE Robotics & Automation Magazine vol. 23 93–106 (2016) – 10.1109/mra.2016.2582718
- Composite PLA - Electrically conductive graphite. (2022)
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Schouten, M., Prakken, B., Sanders, R. & Krijnen, G. Linearisation of a 3D printed flexible tactile sensor based on piezoresistive sensing. 2019 IEEE SENSORS 1–4 (2019) doi:10.1109/sensors43011.2019.8956652 – 10.1109/sensors43011.2019.8956652
- Stramigioli, S. Energy-Aware Robotics. Lecture Notes in Control and Information Sciences 37–50 (2015) doi:10.1007/978-3-319-20988-3_3 – 10.1007/978-3-319-20988-3_3
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Blanc, L., Delchambre, A. & Lambert, P. Flexible Medical Devices: Review of Controllable Stiffness Solutions. Actuators vol. 6 23 (2017) – 10.3390/act6030023
- Xu, Y. et al. The Boom in 3D-Printed Sensor Technology. Sensors vol. 17 1166 (2017) – 10.3390/s17051166
- Quinn, D. & Lauder, G. Tunable stiffness in fish robotics: mechanisms and advantages. Bioinspiration & Biomimetics vol. 17 011002 (2021) – 10.1088/1748-3190/ac3ca5
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Augner, B. & Jacob, B. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory vol. 3 207–229 (2014) – 10.3934/eect.2014.3.207
- Gu, K. Stability and stabilization of infinite dimensional systems with applications. Automatica vol. 36 1775–1776 (2000) – 10.1016/s0005-1098(00)00097-2
- rao, Mechanical Vibrations (2017)
- 20-sim. (2008)
- Robinett, III, R. D. & Wilson, D. G. What is a limit cycle? International Journal of Control vol. 81 1886–1900 (2008) – 10.1080/00207170801927163