Structure-Preserving Model-Reduction of Dissipative Hamiltonian Systems
Authors
Babak Maboudi Afkham, Jan S. Hesthaven
Abstract
Reduced basis methods are popular for approximately solving large and complex systems of differential equations. However, conventional reduced basis methods do not generally preserve conservation laws and symmetries of the full order model. Here, we present an approach for reduced model construction, that preserves the symplectic symmetry of dissipative Hamiltonian systems. The method constructs a closed reduced Hamiltonian system by coupling the full model with a canonical heat bath. This allows the reduced system to be integrated with a symplectic integrator, resulting in a correct dissipation of energy, preservation of the total energy and, ultimately, it helps conserving the stability of the solution. Accuracy and stability of the method are illustrated through the numerical simulation of the dissipative wave equation and a port-Hamiltonian model of an electric circuit.
Keywords
Model order reduction; Symplectic model reduction; The reduced dissipative Hamiltonian method
Citation
- Journal: Journal of Scientific Computing
- Year: 2019
- Volume: 81
- Issue: 1
- Pages: 3–21
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s10915-018-0653-6
BibTeX
@article{Maboudi_Afkham_2018,
title={{Structure-Preserving Model-Reduction of Dissipative Hamiltonian Systems}},
volume={81},
ISSN={1573-7691},
DOI={10.1007/s10915-018-0653-6},
number={1},
journal={Journal of Scientific Computing},
publisher={Springer Science and Business Media LLC},
author={Maboudi Afkham, Babak and Hesthaven, Jan S.},
year={2018},
pages={3--21}
}
References
- Afkham, B. M. & Hesthaven, J. S. Structure Preserving Model Reduction of Parametric Hamiltonian Systems. SIAM Journal on Scientific Computing vol. 39 A2616–A2644 (2017) – 10.1137/17m1111991
- D Amsallem. Amsallem, D., Farhat, C.: On the Stability of Reduced-Order Linearized Computational Fluid Dynamics Models Based on POD and Galerkin Projection: Descriptor Vs. Non-descriptor Forms, in Reduced Order Methods for Modeling and Computational Reduction, pp. 215–233. Springer, Cham (2014) (2014)
- Beattie, C. & Gugercin, S. Structure-preserving model reduction for nonlinear port-Hamiltonian systems. IEEE Conference on Decision and Control and European Control Conference 6564–6569 (2011) doi:10.1109/cdc.2011.6161504 – 10.1109/cdc.2011.6161504
- N Bhatia. Bhatia, N., Szegö, G.: Stability Theory of Dynamical Systems, Classics in Mathematics. Springer, Berlin (2002) (2002)
- Carlberg, K., Tuminaro, R. & Boggs, P. Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics. SIAM Journal on Scientific Computing vol. 37 B153–B184 (2015) – 10.1137/140959602
- Chaturantabut, S., Beattie, C. & Gugercin, S. Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems. SIAM Journal on Scientific Computing vol. 38 B837–B865 (2016) – 10.1137/15m1055085
- Chaturantabut, S. & Sorensen, D. C. Nonlinear Model Reduction via Discrete Empirical Interpolation. SIAM Journal on Scientific Computing vol. 32 2737–2764 (2010) – 10.1137/090766498
- Corduneanu, C. Integral Equations and Applications. (1991) doi:10.1017/cbo9780511569395 – 10.1017/cbo9780511569395
- A Silva da. da Silva, A.: Introduction to Symplectic and Hamiltonian Geometry. Publicações matemáticas, IMPA, New York (2003) (2003)
- de Gosson, M. Symplectic Geometry and Quantum Mechanics. (Birkhäuser Basel, 2006). doi:10.1007/3-7643-7575-2 – 10.1007/3-7643-7575-2
- Figotin, A. & Schenker, J. H. Spectral Theory of Time Dispersive and Dissipative Systems. Journal of Statistical Physics vol. 118 199–263 (2005) – 10.1007/s10955-004-8783-7
- Figotin, A. & Schenker, J. H. Hamiltonian Structure for Dispersive and Dissipative Dynamical Systems. Journal of Statistical Physics vol. 128 969–1056 (2007) – 10.1007/s10955-007-9321-1
- E Hairer. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Dordrecht (2006) (2006)
- J Hesthaven. Hesthaven, J., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations, Springer Briefs in Mathematics. Springer International Publishing, Berlin (2015) (2015)
- K Ito. Ito, K., Ravindran, S.S.: A Reduced Basis Method for Control Problems Governed by PDEs, in Control and Estimation of Distributed Parameter Systems (Vorau, 1996), pp. 153–168. Birkhäuser, Basel (1996) (1996)
- Ito, K. & Ravindran, S. S. A Reduced-Order Method for Simulation and Control of Fluid Flows. Journal of Computational Physics vol. 143 403–425 (1998) – 10.1006/jcph.1998.5943
- ITO, K. & RAVINDRAN, S. S. Reduced Basis Method for Optimal Control of Unsteady Viscous Flows. International Journal of Computational Fluid Dynamics vol. 15 97–113 (2001) – 10.1080/10618560108970021
- Karow, M., Kressner, D. & Tisseur, F. Structured Eigenvalue Condition Numbers. SIAM Journal on Matrix Analysis and Applications vol. 28 1052–1068 (2006) – 10.1137/050628519
- Lall, S., Krysl, P. & Marsden, J. E. Structure-preserving model reduction for mechanical systems. Physica D: Nonlinear Phenomena vol. 184 304–318 (2003) – 10.1016/s0167-2789(03)00227-6
- Lamb, H. On a Peculiarity of the Wave-System due to the Free Vibrations of a Nucleus in an Extended Medium. Proceedings of the London Mathematical Society vols s1-32 208–213 (1900) – 10.1112/plms/s1-32.1.208
- JE Marsden. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Springer Publishing Company, Berlin (2010) (2010)
- Peng, L. & Mohseni, K. Geometric model reduction of forced and dissipative Hamiltonian systems. 2016 IEEE 55th Conference on Decision and Control (CDC) 7465–7470 (2016) doi:10.1109/cdc.2016.7799422 – 10.1109/cdc.2016.7799422
- Peng, L. & Mohseni, K. Symplectic Model Reduction of Hamiltonian Systems. SIAM Journal on Scientific Computing vol. 38 A1–A27 (2016) – 10.1137/140978922
- RV Polyuga. Polyuga, R.V., van der Schaft, A.: Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Autom. J. IFAC Int. Fed. Autom. Control 46, 665–672 (2010) (2010)
- Prajna, S.: Pod model reduction with stability guarantee. In: 2003. Proceedings. 42nd IEEE Conference on Decision and Control, vol. 5, pp. 5254–5258. IEEE (2003)
- A Quarteroni. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations: An Introduction, UNITEXT. Springer International Publishing, Berlin (2015) (2015)
- Salam, A. & Al-Aidarous, E. Equivalence between modified symplectic Gram-Schmidt and Householder SR algorithms. BIT Numerical Mathematics vol. 54 283–302 (2013) – 10.1007/s10543-013-0441-5
- G Strang. Strang, G.: Introduction to Linear Algebra, 4th edn. Wellesley-Cambridge Press, Wellesley (2009) (2009)
- A Schaft van der. van der Schaft, A.: $L_2$-Gain and Passivity Techniques in Nonlinear Control, Vol. 218 of Lecture Notes in Control and Information Sciences. Springer, London (1996) (1996)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Willems, J. C. Dissipative dynamical systems Part II: Linear systems with quadratic supply rates. Archive for Rational Mechanics and Analysis vol. 45 352–393 (1972) – 10.1007/bf00276494