Robust regulation for first-order port-hamiltonian systems
Authors
Jukka-Pekka Humaloja, Lassi Paunonen, Seppo Pohjolainen
Abstract
We present a method for obtaining robust control over a first-order port-Hamiltonian system. The presented method is especially designed for controlling impedance energy-preserving port-Hamiltonian systems. By combining the stabilization results of port-Hamiltonian systems and the theory of robust output regulation for exponentially stable systems, we design a simple finite-dimensional controller for an unstable system that together with output feedback achieves robust output regulation. The method is demonstrated on an example where we implement a robust regulating controller for the one-dimensional wave equation with boundary control and observation.
Citation
- Journal: 2016 European Control Conference (ECC)
- Year: 2016
- Volume:
- Issue:
- Pages: 2203–2208
- Publisher: IEEE
- DOI: 10.1109/ecc.2016.7810618
BibTeX
@inproceedings{Humaloja_2016,
title={{Robust regulation for first-order port-hamiltonian systems}},
DOI={10.1109/ecc.2016.7810618},
booktitle={{2016 European Control Conference (ECC)}},
publisher={IEEE},
author={Humaloja, Jukka-Pekka and Paunonen, Lassi and Pohjolainen, Seppo},
year={2016},
pages={2203--2208}
}
References
- ramirez, Exponential stability of boundary control port Hamiltonian systems with dynamic feedback. Proceedings of the First IFAC Workshop on Control of Systems Modeled by Partial Differential Equations (2013)
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Trans. Automat. Contr. 59, 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Weiss, G. Regular linear systems with feedback. Math. Control Signal Systems 7, 23–57 (1994) – 10.1007/bf01211484
- Villegas, J. A., Zwart, H., Le Gorrec, Y., Maschke, B. & van der Schaft, A. J. Stability and Stabilization of a Class of Boundary Control Systems. Proceedings of the 44th IEEE Conference on Decision and Control 3850–3855 doi:10.1109/cdc.2005.1582762 – 10.1109/cdc.2005.1582762
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Trans. Automat. Contr. 54, 142–147 (2009) – 10.1109/tac.2008.2007176
- Hamalainen, T. & Pohjolainen, S. A finite-dimensional robust controller for systems in the CD-algebra. IEEE Trans. Automat. Contr. 45, 421–431 (2000) – 10.1109/9.847722
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- jacob, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces, volume 223 of Operator Theory: Advances and Applications. Birkhauser Basel Switzerland (2012)
- hämäläinen, Robust Regulation for Exponentially Stable Boundary Control Systems in Hilbert Space. Proc of the 8th IEEE Int Conf on Methods and Models on Automation and Control (2002)
- Paunonen, L. & Pohjolainen, S. The Internal Model Principle for Systems with Unbounded Control and Observation. SIAM J. Control Optim. 52, 3967–4000 (2014) – 10.1137/130921362
- Paunonen, L. & Pohjolainen, S. Internal Model Theory for Distributed Parameter Systems. SIAM J. Control Optim. 48, 4753–4775 (2010) – 10.1137/090760957
- Davison, E. Multivariable tuning regulators: The feedforward and robust control of a general servomechanism problem. IEEE Trans. Automat. Contr. 21, 35–47 (1976) – 10.1109/tac.1976.1101126
- curtain, An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (1995)
- paunonen, Controller Design for Robust Output Regulation of Regular Linear Systems. IEEE Trans Automat Control (2015)