@article{Polyuga_2010,title={{Discussion on: “Passivity and Structure Preserving Order Reduction of Linear Port-Hamiltonian Systems Using Krylov Subspaces”}},volume={16},ISSN={0947-3580},DOI={10.1016/s0947-3580(10)70672-5},number={4},journal={European Journal of Control},publisher={Elsevier BV},author={Polyuga, Rostyslav V.},year={2010},pages={407--409}}
Antoulas, Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia (2005)
Arnoldi, W. E. The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quarterly of Applied Mathematics vol. 9 17–29 (1951) – 10.1090/qam/42792
(2009)
Grimme, Krylov Projection Methods for Model Reduction. PhD thesis, Coordinated Science Laboratory. University of Illinois at Urbana-Champaign (1997)
Gugercin, Interpolation-basedH2 model reduction for port-Hamiltonian systems (2009)
Hartmann, (2009)
Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
Schilders, W. Introduction to Model Order Reduction. Mathematics in Industry 3–32 (2008) doi:10.1007/978-3-540-78841-6_1 – 10.1007/978-3-540-78841-6_1
van der Schaft, A. Nonlinear H ∞ Control. Communications and Control Engineering 163–192 (2000) doi:10.1007/978-1-4471-0507-7_7 – 10.1007/978-1-4471-0507-7_7
Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493