Dynamic modeling of a curling HASEL actuator using the port Hamiltonian framework with experimental validation
Authors
Nelson Cisneros, Yongxin Wu, Kanty Rabenorosoa, Yann Le Gorrec
Abstract
This paper addresses the modeling, parameter identification, and validation of curling Hydraulically Amplified Self-healing Electrostatic (HASEL) actuators using the port Hamiltonian (PH) framework. Employing a modular approach, the HASEL actuator is conceptualized as a combination of elementary subsystems. Each subsystem includes electrical and mechanical components. The electrical component is characterized by a variable capacitor in parallel with a resistor branch, which is in series with another capacitor that is also in parallel with a resistor branch, representing charge retention-related drift. The mechanical component consists of linear and torsional springs connected to an equivalent mass. The parameters of the proposed model were identified using the Levenberg–Marquardt optimization algorithm with data from the developed experimental setup. Additional sets of experimental data were used to validate the obtained model.
Keywords
HASEL actuators; Soft actuators; Nonlinear systems modeling; Port-Hamiltonian systems
Citation
- Journal: Mechatronics
- Year: 2025
- Volume: 109
- Issue:
- Pages: 103342
- Publisher: Elsevier BV
- DOI: 10.1016/j.mechatronics.2025.103342
BibTeX
@article{Cisneros_2025,
volume={109},
ISSN={0957-4158},
DOI={10.1016/j.mechatronics.2025.103342},
journal={Mechatronics},
publisher={Elsevier BV},
author={Cisneros, Nelson and Wu, Yongxin and Rabenorosoa, Kanty and Le Gorrec, Yann},
year={2025},
pages={103342}
}
References
- Acome, E. et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61–65 (2018) – 10.1126/science.aao6139
- Rothemund, HASEL artificial muscles for a new generation of lifelike robots—recent progress and future opportunities. Adv Mater (2021)
- Kim, Double-layered electrohydraulic actuator for bi-directional bending motion of soft gripper. (2021)
- Ly, K. et al. Electro-Hydraulic Rolling Soft Wheel: Design, Hybrid Dynamic Modeling, and Model Predictive Control. IEEE Trans. Robot. 38, 3044–3063 (2022) – 10.1109/tro.2022.3167438
- Tian, Y. et al. Peano‐Hydraulically Amplified Self‐Healing Electrostatic Actuators Based on a Novel Bilayer Polymer Shell for Enhanced Strain, Load, and Rotary Motion. Advanced Intelligent Systems 4, (2022) – 10.1002/aisy.202100239
- Kellaris, N. et al. Spider‐Inspired Electrohydraulic Actuators for Fast, Soft‐Actuated Joints. Advanced Science 8, (2021) – 10.1002/advs.202100916
- Yoder, A soft, fast and versatile electrohydraulic gripper with capacitive object size detection. Adv Funct Mater (2023)
- Kellaris, N., Venkata, V. G., Rothemund, P. & Keplinger, C. An analytical model for the design of Peano-HASEL actuators with drastically improved performance. Extreme Mechanics Letters 29, 100449 (2019) – 10.1016/j.eml.2019.100449
- Wang, X., Mitchell, S. K., Rumley, E. H., Rothemund, P. & Keplinger, C. High‐Strain Peano‐HASEL Actuators. Adv Funct Materials 30, (2019) – 10.1002/adfm.201908821
- Rothemund, P., Kirkman, S. & Keplinger, C. Dynamics of electrohydraulic soft actuators. Proc. Natl. Acad. Sci. U.S.A. 117, 16207–16213 (2020) – 10.1073/pnas.2006596117
- Volchko, Model-based data-driven system identification and controller synthesis framework for precise control of siso and miso HASEL-powered robotic systems. (2022)
- Hainsworth, Simulating electrohydraulic soft actuator assemblies via reduced order modeling. (2022)
- Washington, A., Olsen, Z., Su, J. & Kim, K. J. A physics-based modeling of a hydraulically amplified electrostatic actuator. J. Phys. Commun. 6, 085007 (2022) – 10.1088/2399-6528/ac8335
- Chen, Data-driven methods applied to soft robot modeling and control: A review. IEEE Trans Autom Sci Eng (2024)
- Yeh, Y., Cisneros, N., Wu, Y., Rabenorosoa, K. & Gorrec, Y. L. Modeling and Position Control of the HASEL Actuator via Port-Hamiltonian Approach. IEEE Robot. Autom. Lett. 7, 7100–7107 (2022) – 10.1109/lra.2022.3181365
- Flores, G. & Spong, M. W. The Soft-PVTOL: Modeling and control. Robotics and Autonomous Systems 187, 104925 (2025) – 10.1016/j.robot.2025.104925
- Liu, Z., McAleese, H., Weightman, A. & Cooper, G. Optimization of hydraulically amplified electrostatic actuators based on an evolutionary strategy and finite element model to match the performance of the human triceps surae muscle fibres. Extreme Mechanics Letters 63, 102050 (2023) – 10.1016/j.eml.2023.102050
- Sîrbu, I.-D. et al. Electrostatic actuators with constant force at low power loss using matched dielectrics. Nat Electron 6, 888–899 (2023) – 10.1038/s41928-023-01057-0
- Rumley, Characterization of charge retention effects in HASEL actuators. (2022)
- van der Schaft, A. & Schumacher, H. An Introduction to Hybrid Dynamical Systems. Lecture Notes in Control and Information Sciences (Springer London, 2000). doi:10.1007/bfb0109998 – 10.1007/bfb0109998
- Franco, E., Garriga-Casanovas, A., Tang, J., Rodriguez y Baena, F. & Astolfi, A. Adaptive Energy Shaping Control of a Class of Nonlinear Soft Continuum Manipulators. IEEE/ASME Trans. Mechatron. 27, 280–291 (2022) – 10.1109/tmech.2021.3063121
- Franco, E., Garriga Casanovas, A., Tang, J., Rodriguez y Baena, F. & Astolfi, A. Position regulation in Cartesian space of a class of inextensible soft continuum manipulators with pneumatic actuation. Mechatronics 76, 102573 (2021) – 10.1016/j.mechatronics.2021.102573
- Mattioni, A., Wu, Y., Ramirez, H., Le Gorrec, Y. & Macchelli, A. Modelling and control of an IPMC actuated flexible structure: A lumped port Hamiltonian approach. Control Engineering Practice 101, 104498 (2020) – 10.1016/j.conengprac.2020.104498
- Zhou, Port-Hamiltonian modeling and IDA-PBC control of an IPMC-actuated flexible beam. (2021)
- Silva-Plata, C. et al. Model-Based Capacitive Touch Sensing in Soft Robotics: Achieving Robust Tactile Interactions for Artistic Applications. IEEE Robot. Autom. Lett. 10, 4596–4603 (2025) – 10.1109/lra.2025.3539940