Authors

Junjie Gong, Jian Chen, Dengsheng Cai, Wei Wei, Yu Long

Abstract

Trajectory tracking control is pivotal for achieving autonomous operation in hydraulic excavators. This paper proposes a robust control scheme, merging passivity-based and impedance control, enhancing robustness and stability. First, the excavator’s coupled nonlinear dynamics are transformed into an open-loop port Hamiltonian model with disturbances. Through an energy shaping method, this model becomes an ideal closed-loop port Hamiltonian system, stabilized asymptotically by damping injection. An improved robust disturbance observer estimates system disturbances, guiding control compensation term design. Hydraulic cylinder forces and displacements are calculated from the closed-loop port Hamiltonian system’s matching equations. By integrating passivity and impedance control, a flow controller resolves electrohydraulic servo system nonlinearity. Comparative analysis with existing methodologies demonstrates the proposed robust controller’s superior tracking accuracy, even in the presence of shock disturbances.

Keywords

Autonomous hydraulic excavator; Passivity-based control; Impedance control; Disturbance observer

Citation

BibTeX

@article{Gong_2025,
  title={{Disturbance observer-based passivity and impedance control for trajectory tracking in autonomous hydraulic excavators}},
  volume={170},
  ISSN={0926-5805},
  DOI={10.1016/j.autcon.2024.105898},
  journal={Automation in Construction},
  publisher={Elsevier BV},
  author={Gong, Junjie and Chen, Jian and Cai, Dengsheng and Wei, Wei and Long, Yu},
  year={2025},
  pages={105898}
}

Download the bib file

References

  • Zhang, L. et al. An autonomous excavator system for material loading tasks. Science Robotics vol. 6 (2021) – 10.1126/scirobotics.abc3164
  • Zhang, T. et al. Data-driven excavation trajectory planning for unmanned mining excavator. Automation in Construction vol. 162 105395 (2024) – 10.1016/j.autcon.2024.105395
  • Lee, M. et al. Precision Motion Control of Robotized Industrial Hydraulic Excavators via Data-Driven Model Inversion. IEEE Robotics and Automation Letters vol. 7 1912–1919 (2022) – 10.1109/lra.2022.3142389
  • Shen, Y., Wang, J., Feng, C. & Wang, Q. Hybrid-driven autonomous excavator trajectory generation combining empirical driver skills and optimization. Automation in Construction vol. 165 105523 (2024) – 10.1016/j.autcon.2024.105523
  • Shi, J., Quan, L., Zhang, X. & Xiong, X. Electro-hydraulic velocity and position control based on independent metering valve control in mobile construction equipment. Automation in Construction vol. 94 73–84 (2018) – 10.1016/j.autcon.2018.06.005
  • Feng, H. et al. Adaptive sliding mode controller based on fuzzy rules for a typical excavator electro-hydraulic position control system. Engineering Applications of Artificial Intelligence vol. 126 107008 (2023) – 10.1016/j.engappai.2023.107008
  • Wang, Z., Zhou, R., Hu, C. & Zhu, Y. Online Iterative Learning Compensation Method Based on Model Prediction for Trajectory Tracking Control Systems. IEEE Transactions on Industrial Informatics vol. 18 415–425 (2022) – 10.1109/tii.2021.3085845
  • Izadbakhsh, A. & Nikdel, N. Robust adaptive control of cooperative multiple manipulators based on the Stancu–Chlodowsky universal approximator. Communications in Nonlinear Science and Numerical Simulation vol. 111 106471 (2022) – 10.1016/j.cnsns.2022.106471
  • Feng, H. et al. A new adaptive sliding mode controller based on the RBF neural network for an electro-hydraulic servo system. ISA Transactions vol. 129 472–484 (2022) – 10.1016/j.isatra.2021.12.044
  • Feng, H., Ma, W., Yin, C. & Cao, D. Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller. Automation in Construction vol. 127 103722 (2021) – 10.1016/j.autcon.2021.103722
  • Ye, Y., Yin, C.-B., Gong, Y. & Zhou, J. Position control of nonlinear hydraulic system using an improved PSO based PID controller. Mechanical Systems and Signal Processing vol. 83 241–259 (2017) – 10.1016/j.ymssp.2016.06.010
  • Yang, T., Sun, N. & Fang, Y. Adaptive Fuzzy Control for Uncertain Mechatronic Systems With State Estimation and Input Nonlinearities. IEEE Transactions on Industrial Informatics vol. 18 1770–1780 (2022) – 10.1109/tii.2021.3089143
  • Kumar, A., Raj, R., Kumar, A. & Verma, B. Design of a novel mixed interval type-2 fuzzy logic controller for 2-DOF robot manipulator with payload. Engineering Applications of Artificial Intelligence vol. 123 106329 (2023) – 10.1016/j.engappai.2023.106329
  • Feng, H. et al. Robotic excavator trajectory control using an improved GA based PID controller. Mechanical Systems and Signal Processing vol. 105 153–168 (2018) – 10.1016/j.ymssp.2017.12.014
  • Huo, D., Chen, J., Zhang, H., Shi, Y. & Wang, T. Intelligent prediction for digging load of hydraulic excavators based on RBF neural network. Measurement vol. 206 112210 (2023) – 10.1016/j.measurement.2022.112210
  • Egli, P. & Hutter, M. A General Approach for the Automation of Hydraulic Excavator Arms Using Reinforcement Learning. IEEE Robotics and Automation Letters vol. 7 5679–5686 (2022) – 10.1109/lra.2022.3152865
  • Park, J., Lee, B., Kang, S., Kim, P. Y. & Kim, H. J. Online Learning Control of Hydraulic Excavators Based on Echo-State Networks. IEEE Transactions on Automation Science and Engineering vol. 14 249–259 (2017) – 10.1109/tase.2016.2582213
  • Park, J. et al. Utilizing online learning based on echo-state networks for the control of a hydraulic excavator. Mechatronics vol. 24 986–1000 (2014) – 10.1016/j.mechatronics.2014.10.004
  • Feng, H., Song, Q., Yin, C. & Cao, D. Adaptive Impedance Control Method for Dynamic Contact Force Tracking of Robotic Excavators. Journal of Construction Engineering and Management vol. 148 (2022) – 10.1061/(asce)co.1943-7862.0002399
  • Kim, S., Park, J., Kang, S., Kim, P. Y. & Kim, H. J. A Robust Control Approach for Hydraulic Excavators Using μ-synthesis. International Journal of Control, Automation and Systems vol. 16 1615–1628 (2018) – 10.1007/s12555-017-0071-9
  • Jose, J. T., Das, J. & Mishra, S. Kr. Dynamic Improvement of Hydraulic Excavator Using Pressure Feedback and Gain Scheduled Model Predictive Control. IEEE Sensors Journal vol. 21 18526–18534 (2021) – 10.1109/jsen.2021.3083677
  • Sotiropoulos, F. E. & Asada, H. H. Dynamic Modeling of Bucket-Soil Interactions Using Koopman-DFL Lifting Linearization for Model Predictive Contouring Control of Autonomous Excavators. IEEE Robotics and Automation Letters vol. 7 151–158 (2022) – 10.1109/lra.2021.3121136
  • Pang, S. et al. Interconnection and Damping Assignment Passivity-Based Control Applied to On-Board DC–DC Power Converter System Supplying Constant Power Load. IEEE Transactions on Industry Applications vol. 55 6476–6485 (2019) – 10.1109/tia.2019.2938149
  • Donaire, A., Romero, J. G., Ortega, R., Siciliano, B. & Crespo, M. Robust IDA-PBC for underactuated mechanical systems subject to matched disturbances. International Journal of Robust and Nonlinear Control vol. 27 1000–1016 (2016) – 10.1002/rnc.3615
  • Franco, E., Rodriguez y Baena, F. & Astolfi, A. Robust dynamic state feedback for underactuated systems with linearly parameterized disturbances. International Journal of Robust and Nonlinear Control vol. 30 4112–4128 (2020) – 10.1002/rnc.4985
  • J. Harandi, M. R. & Taghirad, H. D. Adaptive interconnection and damping assignment passivity‐based control for an underactuated cable‐driven robot. International Journal of Adaptive Control and Signal Processing vol. 35 2487–2498 (2021) – 10.1002/acs.3332
  • Gong, Path-tracking cascade control of hydraulic-tracked vehicles based on port-controlled Hamiltonian model. IEEE Trans. Intell. Veh. (2024)
  • Haddad, N. K., Chemori, A. & Belghith, S. Robustness enhancement of IDA-PBC controller in stabilising the inertia wheel inverted pendulum: theory and real-time experiments. International Journal of Control vol. 91 2657–2672 (2017) – 10.1080/00207179.2017.1331378
  • Acosta, J. A., Ortega, R., Astolfi, A. & Mahindrakar, A. D. Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one. IEEE Transactions on Automatic Control vol. 50 1936–1955 (2005) – 10.1109/tac.2005.860292
  • Romero, J. G., Donaire, A. & Ortega, R. Robust energy shaping control of mechanical systems. Systems & Control Letters vol. 62 770–780 (2013) – 10.1016/j.sysconle.2013.05.011
  • Zhang, Research on trajectory planning and autodig of hydraulic excavator. Math. Probl. Eng. (2017)
  • Deng, W. & Yao, J. Extended-State-Observer-Based Adaptive Control of Electrohydraulic Servomechanisms Without Velocity Measurement. IEEE/ASME Transactions on Mechatronics vol. 25 1151–1161 (2020) – 10.1109/tmech.2019.2959297
  • Su, X., Qing, F., Chang, H. & Wang, S. Trajectory Tracking Control of Human Support Robots via Adaptive Sliding-Mode Approach. IEEE Transactions on Cybernetics vol. 54 1747–1754 (2024) – 10.1109/tcyb.2023.3253171
  • Qin, T., Li, Y., Quan, L. & Yang, L. An Adaptive Robust Impedance Control Considering Energy-Saving of Hydraulic Excavator Boom and Stick Systems. IEEE/ASME Transactions on Mechatronics vol. 27 1928–1936 (2022) – 10.1109/tmech.2022.3173991
  • Feng, H. et al. A new adaptive sliding mode controller based on the RBF neural network for an electro-hydraulic servo system. ISA Transactions vol. 129 472–484 (2022) – 10.1016/j.isatra.2021.12.044