Interconnection and Damping Assignment Passivity-Based Control Applied to On-Board DC–DC Power Converter System Supplying Constant Power Load
Authors
Shengzhao Pang, Babak Nahid-Mobarakeh, Serge Pierfederici, Matheepot Phattanasak, Yigeng Huangfu, Guangzhao Luo, Fei Gao
Abstract
In the more electric aircraft context, dc distribution systems have a time-varying structure due to the flexible distributed loads and complex operation conditions. This feature poses challenges for system stability and increases the difficulty of the stability analysis. Besides, the risk of instability may be increased under constant power load condition due to the negative incremental impedance characteristic. To this end, this article proposes an improved interconnection and damping assignment passivity-based control scheme. Particularly, an adaptive interconnection matrix is developed to establish the internal links in port-controlled Hamiltonian models and to generate the unique control law. The damping assignment technique is addressed to tune the dynamic characteristic. In order to meet the load requirements of different voltage levels, the design procedures were given for determining the control law in both boost converter and buck converter cases. The simulation and experimental results are performed to demonstrate the validity of the proposed control approach.
Citation
- Journal: IEEE Transactions on Industry Applications
- Year: 2019
- Volume: 55
- Issue: 6
- Pages: 6476–6485
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tia.2019.2938149
BibTeX
@article{Pang_2019,
title={{Interconnection and Damping Assignment Passivity-Based Control Applied to On-Board DC–DC Power Converter System Supplying Constant Power Load}},
volume={55},
ISSN={1939-9367},
DOI={10.1109/tia.2019.2938149},
number={6},
journal={IEEE Transactions on Industry Applications},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Pang, Shengzhao and Nahid-Mobarakeh, Babak and Pierfederici, Serge and Phattanasak, Matheepot and Huangfu, Yigeng and Luo, Guangzhao and Gao, Fei},
year={2019},
pages={6476--6485}
}
References
- Nunna, K., Sassano, M. & Astolfi, A. Constructive Interconnection and Damping Assignment for Port-Controlled Hamiltonian Systems. IEEE Trans. Automat. Contr. 60, 2350–2361 (2015) – 10.1109/tac.2015.2400663
- Pang, S. et al. Research on LC Filter Cascaded with Buck Converter Supplying Constant Power Load Based on IDA-Passivity-Based Control. IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society 4992–4997 (2018) doi:10.1109/iecon.2018.8591172 – 10.1109/iecon.2018.8591172
- Zeng, J., Zhang, Z. & Qiao, W. An Interconnection and Damping Assignment Passivity-Based Controller for a DC–DC Boost Converter With a Constant Power Load. IEEE Trans. on Ind. Applicat. 50, 2314–2322 (2014) – 10.1109/tia.2013.2290872
- Lei, Y., Lin, X. & Zhu, Y. Passivity-Based Control Strategy for SMES Under an Unbalanced Voltage Condition. IEEE Access 6, 28768–28776 (2018) – 10.1109/access.2018.2831251
- Pang, S. et al. Improving the Stability of Cascaded DC-DC Converter Systems via the Viewpoints of Passivity-Based Control and Port-Controlled Hamiltonian Framework. 2019 IEEE Industry Applications Society Annual Meeting 1–6 (2019) doi:10.1109/ias.2019.8911961 – 10.1109/ias.2019.8911961
- Zhao, Y., Qiao, W. & Ha, D. A Sliding-Mode Duty-Ratio Controller for DC/DC Buck Converters With Constant Power Loads. IEEE Trans. on Ind. Applicat. 50, 1448–1458 (2014) – 10.1109/tia.2013.2273751
- Hussain, M. N., Mishra, R. & Agarwal, V. A Frequency-Dependent Virtual Impedance for Voltage-Regulating Converters Feeding Constant Power Loads in a DC Microgrid. IEEE Trans. on Ind. Applicat. 54, 5630–5639 (2018) – 10.1109/tia.2018.2846637
- Zadeh, M. K. et al. Discrete-Time Modeling, Stability Analysis, and Active Stabilization of DC Distribution Systems With Multiple Constant Power Loads. IEEE Trans. on Ind. Applicat. 52, 4888–4898 (2016) – 10.1109/tia.2016.2594040
- Pang, S. et al. IDA-Passivity-Based Control for Boost Converter with LC Filter Supplying Constant Power Load. 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC) 1–6 (2018) doi:10.1109/esars-itec.2018.8607674 – 10.1109/esars-itec.2018.8607674
- Zhang, X., Ruan, X. & Zhong, Q.-C. Improving the Stability of Cascaded DC/DC Converter Systems via Shaping the Input Impedance of the Load Converter With a Parallel or Series Virtual Impedance. IEEE Trans. Ind. Electron. 62, 7499–7512 (2015) – 10.1109/tie.2015.2459040
- Huangfu, Y. et al. Analysis and Design of an Active Stabilizer for a Boost Power Converter System. Energies 9, 934 (2016) – 10.3390/en9110934
- Pang, S. et al. Fault-tolerant consideration and active stabilization for floating interleaved boost converter system. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society 7947–7952 (2017) doi:10.1109/iecon.2017.8217393 – 10.1109/iecon.2017.8217393
- Magne, P., Marx, D., Nahid-Mobarakeh, B. & Pierfederici, S. Large-Signal Stabilization of a DC-Link Supplying a Constant Power Load Using a Virtual Capacitor: Impact on the Domain of Attraction. IEEE Trans. on Ind. Applicat. 48, 878–887 (2012) – 10.1109/tia.2012.2191250
- Liu, X., Zhou, Y., Zhang, W. & Ma, S. Stability Criteria for Constant Power Loads With Multistage <formula formulatype=”inline”> <tex Notation=”TeX”>$LC$</tex></formula> Filters. IEEE Trans. Veh. Technol. 60, 2042–2049 (2011) – 10.1109/tvt.2011.2148133
- Loop, B. P., Sudhoff, S. D., Zak, S. H. & Zivi, E. L. Estimating Regions of Asymptotic Stability of Power Electronics Systems Using Genetic Algorithms. IEEE Trans. Contr. Syst. Technol. 18, 1011–1022 (2010) – 10.1109/tcst.2009.2031325
- Ryalat, M. & Laila, D. S. A Robust IDA-PBC Approach for Handling Uncertainties in Underactuated Mechanical Systems. IEEE Trans. Automat. Contr. 63, 3495–3502 (2018) – 10.1109/tac.2018.2797191
- Barater, D. et al. Multistress Characterization of Fault Mechanisms in Aerospace Electric Actuators. IEEE Trans. on Ind. Applicat. 53, 1106–1115 (2017) – 10.1109/tia.2016.2633948
- Bottcher, M., Dannehl, J. & Fuchs, F. W. Interconnection and damping assignment passivity-based current control of grid-connected PWM converter with LCL-filter. Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010 T3-20-T3-26 (2010) doi:10.1109/epepemc.2010.5606817 – 10.1109/epepemc.2010.5606817
- Huangfu, Y. et al. Stability Analysis and Active Stabilization of On-board DC Power Converter System with Input Filter. IEEE Trans. Ind. Electron. 65, 790–799 (2018) – 10.1109/tie.2017.2703663
- Tariq, M., Maswood, A. I., Gajanayake, C. J., Gupta, A. K. & Sasongko, F. Battery energy storage system integration to the more electric aircraft 270 V DC power distribution bus using peak current controlled dual active bridge converter. 2017 IEEE Energy Conversion Congress and Exposition (ECCE) 2068–2073 (2017) doi:10.1109/ecce.2017.8096412 – 10.1109/ecce.2017.8096412
- Meng, Y., Shang, S., Zhang, H., Cui, Y. & Wang, X. IDA‐PB control with integral action of Y‐connected modular multilevel converter for fractional frequency transmission application. IET Generation Trans & Dist 12, 3385–3397 (2017) – 10.1049/iet-gtd.2017.0573
- Gao, F., Bozhko, S., Costabeber, A., Asher, G. & Wheeler, P. Control Design and Voltage Stability Analysis of a Droop-Controlled Electrical Power System for More Electric Aircraft. IEEE Trans. Ind. Electron. 64, 9271–9281 (2017) – 10.1109/tie.2017.2711552
- Pang, S. et al. IDA-Passivity-Based Control for On-board DC Power Converter System with Constant Power Load. 2018 IEEE Industry Applications Society Annual Meeting (IAS) 1–6 (2018) doi:10.1109/ias.2018.8544662 – 10.1109/ias.2018.8544662
- Buticchi, G., Costa, L. & Liserre, M. Improving System Efficiency for the More Electric Aircraft: A Look at dc\/dc Converters for the Avionic Onboard dc Microgrid. EEE Ind. Electron. Mag. 11, 26–36 (2017) – 10.1109/mie.2017.2723911
- Chen, J., Zhang, X. & Wen, C. Harmonics Attenuation and Power Factor Correction of a More Electric Aircraft Power Grid Using Active Power Filter. IEEE Trans. Ind. Electron. 63, 7310–7319 (2016) – 10.1109/tie.2016.2590990
- Pang, S. et al. DC Microgrid Topologies and Stability Analysis for Electrified Transportation Systems. 2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC) 1055–1060 (2018) doi:10.1109/epepemc.2018.8521950 – 10.1109/epepemc.2018.8521950
- Jia, Y. & Rajashekara, K. An Induction Generator-Based AC/DC Hybrid Electric Power Generation System for More Electric Aircraft. IEEE Trans. on Ind. Applicat. 53, 2485–2494 (2017) – 10.1109/tia.2017.2650862
- Herrera, L., Zhang, W. & Wang, J. Stability Analysis and Controller Design of DC Microgrids With Constant Power Loads. IEEE Trans. Smart Grid 1–1 (2015) doi:10.1109/tsg.2015.2457909 – 10.1109/tsg.2015.2457909
- Hilairet, M. et al. A passivity-based controller for coordination of converters in a fuel cell system. Control Engineering Practice 21, 1097–1109 (2013) – 10.1016/j.conengprac.2013.04.003
- khalil, Nonlinear Systems (2002)
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Gui, Y., Wei, B., Li, M., Guerrero, J. M. & Vasquez, J. C. Passivity-based coordinated control for islanded AC microgrid. Applied Energy 229, 551–561 (2018) – 10.1016/j.apenergy.2018.07.115
- Meshram, R. V. et al. Port-Controlled Phasor Hamiltonian Modeling and IDA-PBC Control of Solid-State Transformer. IEEE Trans. Contr. Syst. Technol. 27, 161–174 (2019) – 10.1109/tcst.2017.2761866