Controller design for port-Hamiltonian systems using FEM approximations
Authors
Abstract
Controller design for distributed parameter systems is often accomplished using a lumped approximation. For a system that is exponentially stable, it is reasonable to expect the approximation to preserve this decay rate. Preservation of the decay rate is important for realistic simulations and also for reliable controller design. We show that a simple mixed finite element method conserves exponential stability for a class of boundary-damped systems that are port-Hamiltonian. The results are illustrated by LQ-optimal controller design for a wave equation with spatially varying physical parameters. The convergence and performance of the controllers obtained using this mixed finite element method are compared to those obtained using a standard finite-element method approximation, which does not preserve the stability margin.
Citation
- Journal: 2025 IEEE 64th Conference on Decision and Control (CDC)
- Year: 2025
- Volume:
- Issue:
- Pages: 139–144
- Publisher: IEEE
- DOI: 10.1109/cdc57313.2025.11312387
BibTeX
@inproceedings{Mora_2025,
title={{Controller design for port-Hamiltonian systems using FEM approximations}},
DOI={10.1109/cdc57313.2025.11312387},
booktitle={{2025 IEEE 64th Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Mora, Luis and Morris, Kirsten},
year={2025},
pages={139--144}
}References
- Banks HT, Kunisch K (1984) The Linear Regulator Problem for Parabolic Systems. SIAM J Control Optim 22(5):684–698. https://doi.org/10.1137/032204 – 10.1137/0322043
- Ito K Strong convergence and convergence rates of approximating solutions for algebraic riccati equations in Hilbert spaces. Lecture Notes in Control and Information Sciences 153–16 – 10.1007/bfb0041988
- Morris, Design of Finite-dimensional Controllers for Infinite-dimensional Systems by Approximation. Journal of Mathematical Systems, Estimation, and Control (1994)
- Ervedoza S, Zuazua E (2013) Numerical Approximation of Exact Controls for Waves. Springer New Yor – 10.1007/978-1-4614-5808-1
- Morris KA (2020) Controller Design for Distributed Parameter Systems. Springer International Publishin – 10.1007/978-3-030-34949-3
- Banks HT, Ito K, Wang C (1991) Exponentially stable approximations of weakly damped wave equations. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique 1–3 – 10.1007/978-3-0348-6418-3_1
- Delaunay T, Imperiale S, Moireau P (2024) Uniform boundary stabilization of a high-order finite element space discretization of the 1-d wave equation. Numer Math 156(6):2069–2110. https://doi.org/10.1007/s00211-024-01440- – 10.1007/s00211-024-01440-9
- Zuazua E (2012) A remark on the observability of conservative linear systems. Contemporary Mathematics 47–5 – 10.1090/conm/577/11462
- Liu J, Hao R, Guo B-Z (2022) Order reduction-based uniform approximation of exponential stability for one-dimensional Schrödinger equation. Systems & Control Letters 160:105136. https://doi.org/10.1016/j.sysconle.2022.10513 – 10.1016/j.sysconle.2022.105136
- Wang X, Xue W, He Y, Zheng F (2023) Uniformly exponentially stable approximations for Timoshenko beams. Applied Mathematics and Computation 451:128028. https://doi.org/10.1016/j.amc.2023.12802 – 10.1016/j.amc.2023.128028
- Özer AÖ, Khalilullah I (2025) Uniformly exponentially stable finite-difference model reduction of heat and piezoelectric beam interactions with static or hybrid feedback controllers. EECT 14(2):339–366. https://doi.org/10.3934/eect.202405 – 10.3934/eect.2024057
- Zhang L, Zheng F, Wang S, Han Z (2024) Uniform exponential stability approximations of semi‐discretization schemes for two hybrid systems. Math Methods in App Sciences 48(3):3272–3290. https://doi.org/10.1002/mma.1048 – 10.1002/mma.10484
- Del Rey Fernández DC, Mora LA, Morris K (2023) Strictly Uniform Exponential Decay of the Mixed-FEM Discretization for the Wave Equation With Boundary Dissipation. IEEE Control Syst Lett 7:2155–2160. https://doi.org/10.1109/lcsys.2023.328480 – 10.1109/lcsys.2023.3284801
- Jacob B, Zwart HJ (2012) Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces. Springer Base – 10.1007/978-3-0348-0399-1
- Le Gorrec Y, Zwart H, Maschke B (2005) Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J Control Optim 44(5):1864–1892. https://doi.org/10.1137/04061167 – 10.1137/040611677
- Trenchant V, Ramirez H, Le Gorrec Y, Kotyczka P (2018) Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics 373:673–697. https://doi.org/10.1016/j.jcp.2018.06.05 – 10.1016/j.jcp.2018.06.051
- Kotyczka P (2016) Finite Volume Structure-Preserving Discretization of 1D Distributed-Parameter Port-Hamiltonian Systems. IFAC-PapersOnLine 49(8):298–303. https://doi.org/10.1016/j.ifacol.2016.07.45 – 10.1016/j.ifacol.2016.07.457
- Haine G, Matignon D, Serhani A (2023) Numerical Analysis of a Structure-Preserving Space-Discretization for an Anisotropic and Heterogeneous Boundary Controlled $N$-Dimensional Wave Equation as a Port-Hamiltonian System. IJNAM 20(1):92–133. https://doi.org/10.4208/ijnam2023-100 – 10.4208/ijnam2023-1005
- Golo G, Talasila V, van der Schaft A, Maschke B (2004) Hamiltonian discretization of boundary control systems. Automatica 40(5):757–771. https://doi.org/10.1016/j.automatica.2003.12.01 – 10.1016/j.automatica.2003.12.017
- Thoma T, Kotyczka P (2023) Structure preserving discontinuous Galerkin approximation of one-dimensional port-Hamiltonian systems. IFAC-PapersOnLine 56(2):6783–6788. https://doi.org/10.1016/j.ifacol.2023.10.38 – 10.1016/j.ifacol.2023.10.386
- Moulla R, Lefévre L, Maschke B (2012) Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics 231(4):1272–1292. https://doi.org/10.1016/j.jcp.2011.10.00 – 10.1016/j.jcp.2011.10.008
- Fernández, Uniformly exponentially stable summation-by-parts approximations of port-hamiltonian systems. (2025)
- Serhani A, Matignon D, Haine G (2019) Partitioned Finite Element Method for port-Hamiltonian systems with Boundary Damping: Anisotropic Heterogeneous 2D wave equations. IFAC-PapersOnLine 52(2):96–101. https://doi.org/10.1016/j.ifacol.2019.08.01 – 10.1016/j.ifacol.2019.08.017
- Mora, Exponential Decay Rate of Linear Port-Hamiltonian Systems: A Multiplier Approach. IEEE Transactions on Automatic Control (2024)
- Bernstein DS (2018) Scalar, Vector, and Matrix Mathematic – 10.1515/9781400888252
- Mora, A Mixed-FEM approximation with uniform conservation of the exponential stability for a class of anisotropic port-Hamiltonian system and its application to LQ control. (2025)
- Beattie C, Mehrmann V, Xu H, Zwart H (2018) Linear port-Hamiltonian descriptor systems. Math Control Signals Syst 30(4). https://doi.org/10.1007/s00498-018-0223- – 10.1007/s00498-018-0223-3
- Curtain R, Zwart H (2020) Introduction to Infinite-Dimensional Systems Theory. Springer New Yor – 10.1007/978-1-0716-0590-5
- Morris KA (1994) Convergence of controllers designed using state-space techniques. IEEE Trans Automat Contr 39(10):2100–2104. https://doi.org/10.1109/9.32880 – 10.1109/9.328802