Strictly Uniform Exponential Decay of the Mixed-FEM Discretization for the Wave Equation With Boundary Dissipation
Authors
David C. Del Rey Fernández, Luis A. Mora, Kirsten Morris
Abstract
Uniform preservation of stability in approximations of wave equations is a long-standing issue. In this letter, a one-dimensional wave equation with a partially reflective boundary is approximated using a first-order mixed finite element method. The multiplier method is used to prove that the approximated systems are exponentially stable with a decay rate independent of the mesh size. Upper bounds on the exponential decay are obtained in terms of the physical parameters.
Citation
- Journal: IEEE Control Systems Letters
- Year: 2023
- Volume: 7
- Issue:
- Pages: 2155–2160
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/lcsys.2023.3284801
BibTeX
@article{Del_Rey_Fern_ndez_2023,
title={{Strictly Uniform Exponential Decay of the Mixed-FEM Discretization for the Wave Equation With Boundary Dissipation}},
volume={7},
ISSN={2475-1456},
DOI={10.1109/lcsys.2023.3284801},
journal={IEEE Control Systems Letters},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Del Rey Fernández, David C. and Mora, Luis A. and Morris, Kirsten},
year={2023},
pages={2155--2160}
}
References
- Tucsnak, M. & Weiss, G. Observation and Control for Operator Semigroups. (Birkhäuser Basel, 2009). doi:10.1007/978-3-7643-8994-9 – 10.1007/978-3-7643-8994-9
- komornik, Exact Controllability and Stabilization the Multiplier Method (1994)
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- mora, Exponential decay rate of linear port-Hamiltonian systems. A multiplier approach. arXiv 2303 09382 (2023)
- mora, Exponential decay rate bound of port-Hamiltonian systems in one-dimension with boundary dissipation. Proc IEEE Conf Decis Control (2022)
- Ghislain Haine, G. H., Denis Matignon, D. M. & Anass Serhani, A. S. Numerical Analysis of a Structure-Preserving Space-Discretization for an Anisotropic and Heterogeneous Boundary Controlled $N$-Dimensional Wave Equation as a Port-Hamiltonian System. International Journal of Numerical Analysis and Modeling vol. 20 92–133 (2023) – 10.4208/ijnam2023-1005
- Liu, J. & Guo, B.-Z. A New Semidiscretized Order Reduction Finite Difference Scheme for Uniform Approximation of One-Dimensional Wave Equation. SIAM Journal on Control and Optimization vol. 58 2256–2287 (2020) – 10.1137/19m1246535
- Macchelli, A. Energy shaping of distributed parameter port-Hamiltonian systems based on finite element approximation. Systems & Control Letters vol. 60 579–589 (2011) – 10.1016/j.sysconle.2011.04.016
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics vol. 361 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- Castro, C. & Micu, S. Boundary controllability of a linear semi-discrete 1-D wave equation derived from a mixed finite element method. Numerische Mathematik vol. 102 413–462 (2005) – 10.1007/s00211-005-0651-0
- Banks, H. T., Ito, K. & Wang, C. Exponentially stable approximations of weakly damped wave equations. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique 1–33 (1991) doi:10.1007/978-3-0348-6418-3_1 – 10.1007/978-3-0348-6418-3_1
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Jeltsema, D. & Van Der Schaft, A. J. Lagrangian and Hamiltonian formulation of transmission line systems with boundary energy flow. Reports on Mathematical Physics vol. 63 55–74 (2009) – 10.1016/s0034-4877(09)00009-3
- Cox, S. & Zuazua, E. The rate at which energy decays in a string damped at one end. Indiana University Mathematics Journal vol. 44 0–0 (1995) – 10.1512/iumj.1995.44.2001
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters vol. 121 31–37 (2018) – 10.1016/j.sysconle.2018.09.008
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Zuazua, E. Propagation, Observation, and Control of Waves Approximated by Finite Difference Methods. SIAM Review vol. 47 197–243 (2005) – 10.1137/s0036144503432862
- Morris, K. A. Controller Design for Distributed Parameter Systems. Communications and Control Engineering (Springer International Publishing, 2020). doi:10.1007/978-3-030-34949-3 – 10.1007/978-3-030-34949-3
- Ramdani, K., Takahashi, T. & Tucsnak, M. Uniformly exponentially stable approximations for a class of second order evolution equations. ESAIM: Control, Optimisation and Calculus of Variations vol. 13 503–527 (2007) – 10.1051/cocv:2007020
- peichl, On the uniform stabilizability and the margin of stabilizability of the finite-dimensional approximations of distributed parameter systems. J Math Syst Estim Control (1997)