Constrained port Hamiltonian formulation of multiscale distributed parameter IPMC systems
Authors
Ning Liu, Yongxin Wu, Yann Le Gorrec
Abstract
In this paper, a constrained distributed parameter port-Hamiltonian model of the ionic polymer metal composite actuator is proposed. This model describes the multiscale structure of the system. Submodels are coupled by boundary multi-scale elements. In order to preserve the causality of the system, Lagrangian multipliers are introduced to deal with the coupling between the electro-stress diffusion in the polymer and the flexible beam structure of the actuator. Finally, a structure-preserving discretization scheme and some appropriate projections are used to derive an explicit model suitable for simulation. The accuracy of the model is verified using experimental data.
Keywords
Constrained port Hamiltonian system; infinite dimensional system; multi-scale modeling; model reduction; IPMC actuator
Citation
- Journal: IFAC-PapersOnLine
- Year: 2019
- Volume: 52
- Issue: 15
- Pages: 495–500
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2019.11.724
- Note: 8th IFAC Symposium on Mechatronic Systems MECHATRONICS 2019- Vienna, Austria, 4–6 September 2019
BibTeX
@article{Liu_2019,
title={{Constrained port Hamiltonian formulation of multiscale distributed parameter IPMC systems}},
volume={52},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2019.11.724},
number={15},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Liu, Ning and Wu, Yongxin and Gorrec, Yann Le},
year={2019},
pages={495--500}
}
References
- Bao, (2002)
- Branco, P. J. C., Lopes, B. & Dente, J. A. Nonuniformly Charged Ionic Polymer–Metal Composite Actuators: Electromechanical Modeling and Experimental Validation. IEEE Transactions on Industrial Electronics vol. 59 1105–1113 (2012) – 10.1109/tie.2011.2162710
- Gennes, P. G. de, Okumura, K., Shahinpoor, M. & Kim, K. J. Mechanoelectric effects in ionic gels. Europhysics Letters (EPL) vol. 50 513–518 (2000) – 10.1209/epl/i2000-00299-3
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Nishida, G., Takagi, K., Maschke, B. & Luo, Z. Multi-Scale Distributed Port-Hamiltonian Representation of Ionic Polymer-Metal Composite. IFAC Proceedings Volumes vol. 41 2300–2305 (2008) – 10.3182/20080706-5-kr-1001.00388
- Nishida, G., Takagi, K., Maschke, B. & Osada, T. Multi-scale distributed parameter modeling of ionic polymer-metal composite soft actuator. Control Engineering Practice vol. 19 321–334 (2011) – 10.1016/j.conengprac.2010.10.005
- Park, K., Yoon, M.-K., Lee, S., Choi, J. & Thubrikar, M. Effects of electrode degradation and solvent evaporation on the performance of ionic-polymer–metal composite sensors. Smart Materials and Structures vol. 19 075002 (2010) – 10.1088/0964-1726/19/7/075002
- Ionic Polymer Metal Composites (IPMCs). (2015) doi:10.1039/9781782622581 – 10.1039/9781782622581
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- Villegas, (2007)
- Wu, Y., Hamroun, B., Gorrec, Y. L. & Maschke, B. Port Hamiltonian System in Descriptor Form for Balanced Reduction: Application to a Nanotweezer. IFAC Proceedings Volumes vol. 47 11404–11409 (2014) – 10.3182/20140824-6-za-1003.01579
- Xiao, (2001)
- Yamaue, T., Mukai, H., Asaka, K. & Doi, M. Electrostress Diffusion Coupling Model for Polyelectrolyte Gels. Macromolecules vol. 38 1349–1356 (2005) – 10.1021/ma047944j
- Zhu, Z., Chen, H., Wang, Y. & Li, B. Multi-physical modeling for electro-transport and deformation of ionic polymer metal composites. SPIE Proceedings vol. 8340 83400Q (2012) – 10.1117/12.913020