Multi-Scale Distributed Port-Hamiltonian Representation of Ionic Polymer-Metal Composite
Authors
Gou Nishida, Kentaro Takagi, Bernhard Maschke, Zhi-wei Luo
Abstract
This paper shows that one of soft actuators, Ionic Polymer-Metal Composite (IPMC) can be modeled in terms of distributed port-Hamiltonian systems with multi-scale. The physical structure of IPMC consists of three parts. The first part is an electric double layer at the interface between the polymer and the metal electrodes. The frequency response of the polymer-metal interface shows a fractal degree of gain slope. Then we adopt a black-box circuit model to this part and give considerations for distributed impedance parameters. The second part is an electrostress diffusion coupling model with bending and relaxation dynamics. This part is represented by an electro-osmosis, which is a water transport by an electric field, and a streaming potential, which is an electric field created by a water transport. We discuss the relationship of stress and bending moment induced by swelling. The third part is a mechanical system modeled as a flexible beam with large deformations. The representation has the capability extracting the control structure based on passivity from distributed parameter systems possessing a complex behavior.
Keywords
Modeling; Design methodologies
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2008
- Volume: 41
- Issue: 2
- Pages: 2300–2305
- Publisher: Elsevier BV
- DOI: 10.3182/20080706-5-kr-1001.00388
- Note: 17th IFAC World Congress
BibTeX
@article{Nishida_2008,
title={{Multi-Scale Distributed Port-Hamiltonian Representation of Ionic Polymer-Metal Composite}},
volume={41},
ISSN={1474-6670},
DOI={10.3182/20080706-5-kr-1001.00388},
number={2},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Nishida, Gou and Takagi, Kentaro and Maschke, Bernhard and Luo, Zhi-wei},
year={2008},
pages={2300--2305}
}
References
- Shahinpoor, M. & Kim, K. J. Ionic polymer-metal composites: I. Fundamentals. Smart Mater. Struct. 10, 819–833 (2001) – 10.1088/0964-1726/10/4/327
- Asaka, Modeling of the electromechanical response of ionic polymer metal composites (IPMC). Pro. of SPIE, Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD) (2004)
- Takagi, Limitedangle motor using ionic polymer metal composite. Proc. of SPIE, Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices (EAPAD) (2005)
- Takagi, On a distributed parameter model for electrical impedance of ionic polymer. Proc. of SPIE (2007)
- Yamaue, T., Mukai, H., Asaka, K. & Doi, M. Electrostress Diffusion Coupling Model for Polyelectrolyte Gels. Macromolecules 38, 1349–1356 (2005) – 10.1021/ma047944j
- Yi, Modeling of EAPs as Multiple Energy Domain Systems: A Bond Graph Approach. Proc. of SPIE, Smart Structures and Materials 2006, Electroactive Polymer Actuators and Devices (EAPAD) (2006)
- Gennes, P. G. de, Okumura, K., Shahinpoor, M. & Kim, K. J. Mechanoelectric effects in ionic gels. Europhys. Lett. 50, 513–518 (2000) – 10.1209/epl/i2000-00299-3
- Simo, J. C. & Vu-Quoc, L. On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Part I. Journal of Applied Mechanics 53, 849–854 (1986) – 10.1115/1.3171870
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Gou Nishida & Yamakita, M. Distributed port hamiltonian formulation of flexible beams under large deformations. Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005. 589–594 doi:10.1109/cca.2005.1507190 – 10.1109/cca.2005.1507190
- Couenne, Multi-scale distributed parameter model of an adsorption column using a bond graph approach. (2005)
- Golo, A Hamiltonian formulation of the Timoshenko Beam Model. (2002)
- Franco, In Multi-scale Bond graph model of the electrochemical dynamics in a fuel cell. (2006)
- Maschke, (2005)
- (2004)
- van der Schaft, (2000)
- Stramigioli, S. Geometric modeling of mechanical systems for interactive control. Lecture Notes in Control and Information Sciences 309–332 doi:10.1007/bfb0110389 – 10.1007/bfb0110389
- Ortega, R., van der Schaft, A. J. & Maschke, B. M. Stabilization of port-controlled Hamiltonian systems via energy balancing. Lecture Notes in Control and Information Sciences 239–260 (1999) doi:10.1007/1-84628-577-1_13 – 10.1007/1-84628-577-1_13
- Sobolev, (1964)