Adaptive exponential tracking control of port-Hamiltonian system via contraction and timed IDA-PBC method
Authors
Huimin Zhi, Yanhong Liu, Hongnian Yu
Abstract
The adaptive tracking control for nonlinear systems often relies on stabilizing error dynamics, and the majority of these methods only achieve asymptotic tracking. However, since the time-varying feature of error system, it is challenging to construct a suitable Lyapunov function to accomplish the controller design and stability analysis. To tackle above limitations, an adaptive exponential tracking control strategy is proposed to port-Hamiltonian system (PHS) under the parameter uncertainties. First, a tracking controller is designed that can preserve the structural characteristics of closed-loop PHS by utilizing the timed Interconnection and Damping Assignment Passivity Based Control (IDA-PBC) method. Then using the contraction method to design a differential energy function, the parameter update law of the PHS is obtained and the contractility of the closed-loop system is proved by leveraging the structure properties of PHS. Moreover, the exponential decay rate of tracking controllers is provided and the impact of parameters on system performance is analyzed. The proposed method not only handles time-varying and time-invariant systems in a unified way but also has the advantages of easier energy function construction and relatively simpler stability analysis than the conventional Lyapunov method. Finally, to validate the effectiveness and robustness of proposed tracking strategy, comparative simulations and experiments are performed on uncertain mechanical systems.
Keywords
Adaptive control; Exponential tracking; Contraction analysis; Port-Hamiltonian system; Timed IDA-PBC method
Citation
- Journal: Nonlinear Dynamics
- Year: 2024
- Volume:
- Issue:
- Pages:
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s11071-024-10473-6
BibTeX
@article{Zhi_2024,
title={{Adaptive exponential tracking control of port-Hamiltonian system via contraction and timed IDA-PBC method}},
ISSN={1573-269X},
DOI={10.1007/s11071-024-10473-6},
journal={Nonlinear Dynamics},
publisher={Springer Science and Business Media LLC},
author={Zhi, Huimin and Liu, Yanhong and Yu, Hongnian},
year={2024}
}
References
- Besançon, G. Global output feedback tracking control for a class of Lagrangian systems. Automatica vol. 36 1915–1921 (2000) – 10.1016/s0005-1098(00)00111-4
- Jayawardhana, B. & Weiss, G. Tracking and disturbance rejection for fully actuated mechanical systems. Automatica vol. 44 2863–2868 (2008) – 10.1016/j.automatica.2008.03.030
- Chen, Y., Li, Z., Kong, H. & Ke, F. Model Predictive Tracking Control of Nonholonomic Mobile Robots With Coupled Input Constraints and Unknown Dynamics. IEEE Transactions on Industrial Informatics vol. 15 3196–3205 (2019) – 10.1109/tii.2018.2874182
- Xu, J., Li, D. & Zhang, J. Extended state observer based dynamic iterative learning for trajectory tracking control of a six-degrees-of-freedom manipulator. ISA Transactions vol. 143 630–646 (2023) – 10.1016/j.isatra.2023.09.020
- Izadbakhsh, A. & Rafiei, S. M. R. Robust control methodologies for optical micro electro mechanical system - new approaches and comparison. 2008 13th International Power Electronics and Motion Control Conference 2102–2107 (2008) doi:10.1109/epepemc.2008.4635577 – 10.1109/epepemc.2008.4635577
- Izadbakhsh, A. & Khorashadizadeh, S. Polynomial-Based Robust Adaptive Impedance Control of Electrically Driven Robots. Robotica vol. 39 1181–1201 (2020) – 10.1017/s0263574720001009
- Izadbakhsh, A. FAT-based robust adaptive control of electrically driven robots without velocity measurements. Nonlinear Dynamics vol. 89 289–304 (2017) – 10.1007/s11071-017-3454-9
- Landau, I. D., Lozano, R., M’Saad, M. & Karimi, A. Adaptive Control. Communications and Control Engineering (Springer London, 2011). doi:10.1007/978-0-85729-664-1 – 10.1007/978-0-85729-664-1
- Astolfi, A., Karagiannis, D. & Ortega, R. Towards applied nonlinear adaptive control. Annual Reviews in Control vol. 32 136–148 (2008) – 10.1016/j.arcontrol.2008.08.003
- Sun, C., Huang, Z. & Wu, H. Adaptive super-twisting global nonsingular terminal sliding mode control for robotic manipulators. Nonlinear Dynamics vol. 112 5379–5389 (2024) – 10.1007/s11071-024-09305-4
- Liu, L., Yue, X., Wen, H. & Dai, H. RISE-based adaptive tracking control for Euler–Lagrange mechanical systems with matched disturbances. ISA Transactions vol. 135 94–104 (2023) – 10.1016/j.isatra.2022.09.045
- Liang, X., Yao, Z., Ge, Y. & Yao, J. Reinforcement learning based adaptive control for uncertain mechanical systems with asymptotic tracking. Defence Technology vol. 34 19–28 (2024) – 10.1016/j.dt.2023.05.016
- Li, D., Xie, T., Li, G., Yao, J. & Hu, S. Adaptive coupling tracking control strategy for double-pendulum bridge crane with load hoisting/lowering. Nonlinear Dynamics vol. 112 8261–8280 (2024) – 10.1007/s11071-024-09474-2
- Yao, Q. & Jahanshahi, H. Novel finite-time adaptive sliding mode tracking control for disturbed mechanical systems. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science vol. 236 8868–8889 (2022) – 10.1177/09544062221091530
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control vol. 47 1218–1233 (2002) – 10.1109/tac.2002.800770
- Escobar, G., van der Schaft, A. J. & Ortega, R. A Hamiltonian viewpoint in the modeling of switching power converters. Automatica vol. 35 445–452 (1999) – 10.1016/s0005-1098(98)00196-4
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Nageshrao, S. P., Lopes, G. A. D., Jeltsema, D. & Babuska, R. Port-Hamiltonian Systems in Adaptive and Learning Control: A Survey. IEEE Transactions on Automatic Control vol. 61 1223–1238 (2016) – 10.1109/tac.2015.2458491
- Wang, Z.-M., Zhao, X., Li, X. & Wei, A. Finite-time adaptive control for uncertain switched port-controlled Hamiltonian systems. Communications in Nonlinear Science and Numerical Simulation vol. 119 107129 (2023) – 10.1016/j.cnsns.2023.107129
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Dirksz, D. A. & Scherpen, J. M. A. Structure Preserving Adaptive Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 57 2880–2885 (2012) – 10.1109/tac.2012.2192359
- Qureshi, A., El Ferik, S. & Lewis, F. L. ℒ2 neuro‐adaptive tracking control of uncertain port‐controlled Hamiltonian systems. IET Control Theory & Applications vol. 9 1781–1790 (2015) – 10.1049/iet-cta.2014.1144
- Yang, Y. An efficient algorithm for periodic Riccati equation with periodically time-varying input matrix. Automatica vol. 78 103–109 (2017) – 10.1016/j.automatica.2016.12.028
- Nguyen, H., Dang, H. B. & Dao, P. N. On-policy and off-policy Q-learning strategies for spacecraft systems: An approach for time-varying discrete-time without controllability assumption of augmented system. Aerospace Science and Technology vol. 146 108972 (2024) – 10.1016/j.ast.2024.108972
- Tsukamoto, H., Chung, S.-J. & Slotine, J.-J. E. Contraction theory for nonlinear stability analysis and learning-based control: A tutorial overview. Annual Reviews in Control vol. 52 135–169 (2021) – 10.1016/j.arcontrol.2021.10.001
- LOHMILLER, W. & SLOTINE, J.-J. E. On Contraction Analysis for Non-linear Systems. Automatica vol. 34 683–696 (1998) – 10.1016/s0005-1098(98)00019-3
- Thenozhi, S., Sanchez, A. C. & Rodriguez-Resendiz, J. A Contraction Theory-Based Tracking Control Design With Friction Identification and Compensation. IEEE Transactions on Industrial Electronics vol. 69 6111–6120 (2022) – 10.1109/tie.2021.3094456
- Reyes-Báez, R., van der Schaft, A. & Jayawardhana, B. Virtual contractivity-based control of fully-actuated mechanical systems in the port-Hamiltonian framework. Automatica vol. 141 110275 (2022) – 10.1016/j.automatica.2022.110275
- Reyes‐Báez, R., van der Schaft, A., Jayawardhana, B. & Pan, L. A family of virtual contraction based controllers for tracking of flexible‐joints port‐Hamiltonian robots: Theory and experiments. International Journal of Robust and Nonlinear Control vol. 30 3269–3295 (2020) – 10.1002/rnc.4929
- Yaghmaei, A. & Yazdanpanah, M. J. Structure Preserving Observer Design for Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 64 1214–1220 (2019) – 10.1109/tac.2018.2847904
- Yi, B., Wang, R. & Manchester, I. R. Reduced-Order Nonlinear Observers Via Contraction Analysis and Convex Optimization. IEEE Transactions on Automatic Control vol. 67 4045–4060 (2022) – 10.1109/tac.2021.3115887
- Chung, S.-J. & Slotine, J.-J. E. Cooperative Robot Control and Concurrent Synchronization of Lagrangian Systems. IEEE Transactions on Robotics vol. 25 686–700 (2009) – 10.1109/tro.2009.2014125
- Yin, H., Jayawardhana, B. & Reyes-Baez, R. Pinning Synchronization of Heterogeneous Multi-Agent Nonlinear Systems via Contraction Analysis. IEEE Control Systems Letters vol. 6 157–162 (2022) – 10.1109/lcsys.2021.3053493
- Kong, F. H. & Manchester, I. R. Contraction analysis of nonlinear noncausal iterative learning control. Systems & Control Letters vol. 136 104599 (2020) – 10.1016/j.sysconle.2019.104599
- Cisneros-Velarde, P., Jafarpour, S. & Bullo, F. A Contraction Analysis of Primal-Dual Dynamics in Distributed and Time-Varying Implementations. IEEE Transactions on Automatic Control vol. 67 3560–3566 (2022) – 10.1109/tac.2021.3103865
- Perez, M. A., Tang, Y. & Hernandez, J. C. Adaptive attitude control for spacecraft based on contraction analysis. 2017 IEEE 56th Annual Conference on Decision and Control (CDC) 897–902 (2017) doi:10.1109/cdc.2017.8263773 – 10.1109/cdc.2017.8263773
- Zhang, S., Ji, H. & Wang, Y. Adaptive control of manipulators by a contraction analysis approach. 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM) 540–545 (2019) doi:10.1109/icarm.2019.8833823 – 10.1109/icarm.2019.8833823
- Yaghmaei, A. & Yazdanpanah, M. J. Trajectory tracking for a class of contractive port Hamiltonian systems. Automatica vol. 83 331–336 (2017) – 10.1016/j.automatica.2017.06.039
- Zhi, H., Wei, J., Liu, Y., Ding, S. & Owens, D. H. Constructive exponential tracking control for mechanical systems via Hamiltonian realization and contraction analysis method. ISA Transactions vol. 142 573–584 (2023) – 10.1016/j.isatra.2023.07.011
- Yuzhen Wang & Shuzhi Sam Ge. Augmented Hamiltonian Formulation and Energy-Based Control Design of Uncertain Mechanical Systems. IEEE Transactions on Control Systems Technology vol. 16 202–213 (2008) – 10.1109/tcst.2007.903367
- Wei, A., Wang, Z., Mu, R. & Zhang, X. Finite‐time adaptive control for port‐controlled Hamiltonian systems with parametric perturbations. International Journal of Adaptive Control and Signal Processing vol. 36 802–817 (2022) – 10.1002/acs.3373
- Wang, Y., Feng, G., Cheng, D. & Liu, Y. Adaptive $L^2$ disturbance attenuation control of multi-machine power systems with SMES units. Automatica vol. 42 1121–1132 (2006) – 10.1016/j.automatica.2006.03.014